Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекції_Фізика(1-16).doc
Скачиваний:
439
Добавлен:
19.02.2016
Размер:
5.38 Mб
Скачать

Електрична ємність відокремленого (самотнього) провідника

Відокремлений провідник – це провідник, який віддалений від інших провідників, тіл та зарядів.

Потенціал такого провідника прямо пропорційний його заряду і, як показують досліди, різні провідники, будучи однаково зарядженими, мають різні потенціали. Тому для самотнього провідника можна записати таку залежність:

.

Величину

називають електроємністю (або просто ємністю) самотнього провідника. Ємність самотнього провідника чисельно дорівнює заряду, надання якого провіднику змінює його потенціал на одиницю.

Ємність провідника залежить від його розмірів і форми і не залежить від матеріалу, форми і розміру порожнини всередині провідника; вона не залежить також від заряду провідника і від його потенціалу.

Одиниця ємності – фарад (Ф). 1 Ф - це ємність такого самотнього провідника, потенціал якого змінюється на 1 В у разі надання йому заряду 1 Кл.

Розрахуємо ємність самотньої кулі радіуса , яка міститься в середовищі з діелектричною проникністю . Оскільки потенціал такої кулі визначається залежністю

,

то скориставшись формулою для ємності і підставивши в неї вищенаведену залежність для, отримаємо таку формулу для ємності кулі:

.

З цієї формули витікає, що ємність 1 Ф має куля радіусом = 9·106км, що приблизно в 1400 раз більше радіуса Землі. Ємність Землі приблизно становить 0,7 мФ.

Таким чином, фарад – дуже велика величина, і тому на практиці використовують часткові (дольні) одиниці, а саме: міліфарад (мФ), мікрофарад (ммФ), нанофарад (нФ), пікофарад (пФ).

З формули для ємності кулі випливає, що одиниця електричної сталої – фарад на метр (Ф/м).

Конденсатори, їх типи та ємність

Самотні провідники мають дуже малу ємність (навіть куля таких розмірів як Земля має ємність лише 0,7 мФ). В той же час на практиці виникає потреба в пристроях, які могли б, маючи невеликі розміри, при невеликому відносно оточуючих тіл потенціалі накопичувати на собі (так би мовити "конденсувати") значні за величиною заряди, тобто мати велику ємність. Такі пристрої називають конденсаторами.

Конденсатори будуються на тому принципі, що ємність провідника зростає у разі наближення до нього інших тіл – внаслідок виникнення на провіднику зарядів, індукованих іншими тілами. Саме тому на практиці застосовуються конденсатори – системи з провідників, розміщених близько один відносно одного. Конденсатором називають систему з двох металевих електродів (обкладинок) з однаковими по модулю, але протилежними по знаку зарядами розміщених на близькій відстані один від одного і розділених шаром діелектрика. Щоб електричне поле в конденсаторах не змінювалось (або точніше майже не змінювалось) під дією зовнішніх полів це поле намагаються зосередити просторі між обкладинками. Цій вимозі задовольняють дві пластини, розміщені близько одна від одної, два коаксіальних циліндра і дві коаксіальні сфери. Відповідно до цього залежно від форми обкладинок конденсатори поділяють на плоскі, циліндричні та сферичні. За природою діелектрика між обкладинками конденсатора їх поділяють на повітряні, паперові, слюдяні, керамічні та електролітичні.

Ємність конденсаторів визначають за формулою:

де заряд однієї з обкладинок конденсатора; різниця потенціалів (або напруга) між ними.

Електричну ємність конденсатора вимірюють у тих самих одиницях, що і ємність самотнього провідника.

Розрахуємо ємність плоского, циліндричного та сферичного конденсаторів.

1) Ємність плоского конденсатора. Плоский конденсатор складається з двох паралельних металевих пластин площею кожна, які розташовані на відстаніодна від одної і мають заряди +і –(рис 7.3). Відстань між пластинами будемо вважати малою порівняно з лінійними розмірами цих пластин. Тому крайовими ефектами можна знехтувати і поле між обкладинками вважати однорідним. Це поле неважко розрахувати, скориставшись формулою для поля двох нескінченних паралельних різнойменно заряджених площин. Різниця потенціалів між такими площинами з поверхневою густиною заряду, розташованими одна від одної на відстані , дорівнює:

.

Отже, підставивши в загальну формулу для обчислення ємності величину, отримаємо таку формулу для ємності плоского конденсатора:

.

2) Ємність циліндричного конденсатора. Для визначення ємності циліндричного конденсатора, який складається з двох порожнистих коаксіальних циліндрів з радіусами і(), вставлених один в другий (рис. 7.4), знову таки знехтуємо крайовими ефектами і вважатимемо поле радіально-симетричним і зосередженим між циліндричними обкладинками. Різницю потенціалів між обкладинками розрахуємо за формулою для поля рівномірно зарядженого нескінченного циліндра з лінійною густиною (– довжина обкладинок). У разі наявності діелектрика між обкладинками різниця потенціалів

.

Отже, підставивши цю формулу в формулу для ємності , отримаємо такий вираз для ємності циліндричного конденсатора:

.

3) Ємність сферичного конденсатора. Такий конденсатор складається з двох концентричних обкладинок, розділених сферичним шаром діелектрика (рис. 7.5). Оскільки різниця потенціалів між двома точками, що лежать на відстані і() від центра зарядженої сферичної поверхні за наявності діелектрика між обкладинками визначається залежністю:

,

то підставивши цю залежність в формулу для ємності , отримаємо такий вираз для ємності сферичного конденсатора:

.

У випадку малої величини зазора порівняно з радіусом сфери ()вирази для ємності сферичного і плоского конденсаторів співпадають (оскільки– площа сферичної обкладинки):

.

Рис. 7. 3 Рис. 7.4 Рис. 7.5