Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекції_Фізика(1-16).doc
Скачиваний:
439
Добавлен:
19.02.2016
Размер:
5.38 Mб
Скачать

3. Термоелектричні явища: Зеєбека, Пельтьє, Томсона та їх використання

Згідно з другим законом Вольта, в замкнутому колі, що складається з декількох металів, що перебувають при однаковій температурі, е. р. с. не виникає, тобто не відбувається збудження електричного струму. Проте, якщо температура контактів не однакова, то в колі виникає електричний струм, який називається термоелектричним.

Явище збудження термоелектричного струму (явище Зеєбека), а також тісно пов'язані з ним явища Пельтье і Томсона називаються термоелектричними явищами.

1. Явище Зеєбека (182 р.): в замкнутому колі, що складається з послідовно з'єднаних різнорідних провідників, контакти між якими мають різну температуру, виникає електричний струм.

Розглянемо замкнуте коло, що складається з двох металевих провідників 1 і 2 з температурами спаїв T1 (контакт А) і Т2 (контакт В), причому Т1 > Т2 (рис. 32.2).

Рис. 32.2

Встановлено, що в замкнутому колі для багатьох пар металів (наприклад, Сu – Bi, Ag – Сu, Аu – Сu) е. р. с. прямо пропорційна різниці температур в контактах:

Ця е. р. с. називається термоелектрорушійною силою. Напрям струму при Т1 > Т2 на рис. 32.2 показаний стрілкою. Термоелектрорушійна сила, наприклад для пари металів мідь – константан, для різниці температур 100 K становить всього 4,25 мВ.

Причину виникнення термоелектрорушійної сили видно вже з формули

,

що визначає внутрішню контактну різницю потенціалів на межі двох металів. Справа полягає в тому, що положення рівня Фермі залежить від температури. Тому, якщо температури контактів різні, то різними будуть і внутрішні контактні різниці потенціалів. Таким чином, сума стрибків потенціалу відмінна від нуля, що і приводить до виникнення термоелектричного струму. Відзначимо також, що при градієнті температури відбувається і дифузія електронів, яка теж обумовлює термо-е. р. с.

Явище Зеєбека не суперечить другому принципу термодинаміки, оскільки в даному випадку внутрішня енергія перетвориться в електричну, для чого використовується два джерела теплоти (два контакти). Отже, для підтримування постійного струму в колі, що розглядається, необхідно підтримувати постійність різниці температур контактів: до більш нагрітого контакту безперервно підводити теплоту, а від холодного – безперервно її відводити.

Явище Зєєбека використовується для вимірювання температури. Для цього застосовуються термоелементи, або термопари – датчики температур, що складаються з двох сполучених між собою різнорідних металевих провідників. Якщо контакти (звичайно спаї) провідників, що створюють термопару, перебувають при різних температурах, то в колі виникає термоелектрорушійна сила, яка залежить від різниці температур контактів і природи використовуваних матеріалів. Чутливість термопар буде вищою, якщо їх сполучити послідовно. Ці з'єднання називаються термобатареями (або термостовпчиками).

Термопари застосовуються як для вимірювання надмалих різниць температур, так і для вимірювання дуже високих і дуже низьких температур (наприклад, усередині доменних печей або рідких газів). Точність визначення температури за допомогою термопар складає, як правило, декілька кельвін, а у деяких термопар вона досягає 0,01 К.

Термопари мають ряд переваг порівняно зі звичайними термометрами, а саме: мають велику чутливість і малу інерційність, дозволяють проводити вимірювання в широкому інтервалі температур і допускають дистанційні вимірювання.

Явище Зєєбека у принципі може бути використано для генерації електричного струму. Так, вже зараз к.к.д. напівпровідникових термобатарей досягає приблизно 18 %. Отже, удосконалюючи напівпровідникові термоелектрогенератори, можна досягти ефективного прямого перетворення сонячної енергії в електричну.

2. Явище Пельтьє (1834 р.) полягає в тому, що при проходженні через контакт двох різних провідників електричного струму, залежно від його напряму, крім джоулевої теплоти, виділяється або поглинається додаткова теплота.

Таким чином, явище Пельтьє є оберненим відносно явища Зєєбека. На відміну від джоулевої теплоти, яка пропорційна квадрату сили струму, теплота Пельтьє пропорційна першому ступеню сили струму і змінює знак при зміні напряму струму.

Розглянемо замкнуте коло, що складається з двох різнорідних металевих провідників 1 і 2 (рис. 32.3), по яких пропускається струм (його напрям в даному випадку вибраний співпадаючим з напрямомтермоструму (на рис. 32.2 за умови Т1 > Т2 )). Згідно зі спостереженнями Пельтьє, спай А, який при явищі Зеєбека підтримувався б при більш високій температурі, тепер охолоджуватиметься, а спай В – нагріватиметься. При зміні напряму струму спайА нагріватиметься, а спай В – охолоджуватиметься.

Рис. 32.3

Пояснити явище Пельтьє можна таким чином. Електрони по різні боки спаю мають різну середню енергією (повну – кінетичну плюс потенціальну). Якщо електрони (напрям їх руху заданий на рис. 32.3 пунктирними стрілками) пройдуть через спай В і потраплять в область з меншою енергією, то надлишок своєї енергії вони віддадуть кристалічним граткам, і спай нагріватиметься. В спаї А електрони переходять в область з більшою енергією, забираючи тепер енергію, якої не вистачає, у кристалічних граток, і спай охолоджуватиметься.

Явище Пельтье використовується в термоелектричних напівпровідникових холодильниках.

3. Явище Томсона (1856 р.) полягає в тому, що при проходженні струму по нерівномірно нагрітому провіднику має відбуватися додаткове виділення (поглинання) теплоти, аналогічної теплоті Пельтьє.

Це явище можна пояснити таким чином. Оскільки в більш нагрітій частині провідника електрони мають більшу середню енергію, ніж в менш нагрітій, то, рухаючись у напрямі зменшення температури, вони віддають частину своєї енергії граткам, внаслідок чого відбувається виділення теплоти Томсона. Якщо ж електрони рухаються у бік зростання температури, то вони, навпаки, поповнюють свою енергію за рахунок енергії граток, внаслідок чого відбувається поглинання теплоти Томсона.

ЛЕКЦІЯ 33