Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекції_Фізика(1-16).doc
Скачиваний:
439
Добавлен:
19.02.2016
Размер:
5.38 Mб
Скачать

2.2. Фізичні процеси, що відбуваються в р-п-переході

Розглянемо фізичні процеси, що відбуваються в р-п-переході (рис. 31.2).

Електрони з п-напівпровідника, де їх концентрація вище, будуть дифундувати в р-напівпровідник, де їх концентрація нижче. Дифузія ж дірок відбувається у зворотному напрямі – у напрямі р п. В п-напівпровіднику через вихід електронів поблизу межі залишається некомпенсований позитивний об'ємний заряд нерухомих іонізованих донорних атомів. В р-напівпровіднику через вихід дірок поблизу межі утворюється негативний об'ємний заряд нерухомих іонізованих акцепторів (рис. 31.2). Ці об'ємні заряди утворюють поблизу границі подвійний електричний шар, поле якого, направлене від п-області до р-області, перешкоджає подальшому переходу електронів у напрямі п р і дірок у напрямі р п . Якщо концентрації донорів і акцепторів в напівпровідниках п- і р-типу однакові, то товщина шарів, в яких локалізуються нерухомі заряди, однакова.

Рис. 31.2

Провідність p-n-переходу

Товщина шару p-n-переходу в напівпровідниках складає приблизно 10-6 – 10-7 м, а контактна різниця потенціалів – десяті частки вольт. Носії струму здатні подолати таку різницю потенціалів лише за температури в декілька тисяч градусів, тобто за звичайних температур рівноважний контактний шар є замикаючим (характеризується підвищеним опором).

Опір замикаючого шару можна змінити з допомогою зовнішньою електричного поля. Якщо прикладене до p-n-переходу зовнішнє електричне поле направлено від n-напівпровідника до р-напівпровідника (мал. а), тобто співпадає з полем контактного шару, то воно викликає рух електронів в n-напівпровіднику і дірок в p-напівпровіднику від межі p-n-переходу в протилежні сторони. В результаті замикаючий шар розшириться і його опір зросте.

Рис. 31.3

Напрям зовнішнього поля, що розширює замикаючий шар, називається замикаючим (зворотним). В цьому напрямі електричний струм через p-n-перехід практично не проходить. Струм в замикаючому шарі в замикаючому напрямі утворюється лише за рахунок неосновних носіїв струму (електронів в р-напівпровіднику і дірок в n-напівпровіднику).

Якщо прикладене до p-n-переходу зовнішнє електричне поле направлено протилежно полю контактного шару (рис. 31.3,б), то воно викликає рух електронів в n-напівпровіднику і дірок в р-напівпровіднику до границі p-n-переходу назустріч один одному. В цій області вони рекомбінують, товщина контактного шару і його опір зменшуються. Отже, в цьому напрямі електричний струм проходить крізь p-n-перехід в напрямі від р-напівпровідника до n-напівпровідника; цей напрям називається пропускним (прямим).

Таким чином, p-n-перехід має односторонню (вентильну) провідність.

2.3. Напівпровідникові діоди

Напівпровідниковий діод – це напівпровідниковий пристрій, що містить один p-n-перехід.

Точковий напівпровідниковий діод

Приклад: точковий германієвий діод (рис. 31.4). Тонка вольфрамова проволока 1 притискається до n-германію 2 вістрям, покритим алюмінієм. Якщо через діод в прямому напрямі пропустити короткочасний імпульс струму, то при цьому різко підвищується дифузія А1 в Ge і утворюється шар германію, збагаченого алюмінієм і такого, що має р-провідність. На границі цього шару утворюється p-n-перехід, який має високий коефіцієнт випрямляння.

Завдяки малій місткості контактного шару точкові діоди застосовуються як детектори (випрямлячі) високочастотних коливань аж до сантиметрового діапазону довжин хвиль.

Рис. 31.4 Рис. 31.5