Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матем / Пособие по математике (Диденко).docx
Скачиваний:
132
Добавлен:
21.05.2015
Размер:
1.84 Mб
Скачать
      1. Системы линейных уравнений

Рассмотрим три основных метода решения систем линейных уравнений: метод Крамера, метод Гаусса, матричный метод. Заметим, что метод Крамера и матричный могут применяться только для невырожденных систем, т. е. систем с определителем, неравным нулю. При этом система имеет единственное решение. Метод Гаусса более универсальный и позволяет решать как определенные системы (имеющие единственное решение), так и неопределенные системы, имеющие множество решений. Применяя преобразования метода Гаусса, можно ответить на вопрос: совместна ли система или вообще не имеет решений, найти ранг матрицы.

Пример 1.6. Решение системы методом Крамера.

Решить систему .

Строим матрицу системы, вычисляем её определитель:

∆ = = 45 + 1 + 12 – (–9 + (–6) + 10) = 63.

Построим определитель1 заменой 1-го столбца на столбец правых частей и вычислим:

1 = = 18 + (–5) + 24 – (45 + (–12) + 4) = 0, тогда переменная х находится по формуле х = = = 0.

Найдем ∆2 заменой 2-го столбца на столбец правых частей:

2== 60 + (–2) + 30 – (– 12 + 12 + 25) = 63,

тогда переменная y находится по формуле y = = 1.

Найдем ∆3 заменой 3-го столбца на столбец правых частей:

3== – 75 + (–4) + (–8) – (6 +10 + (–40)) = –63,

тогда переменная z находится по формуле z = = –1.

Ответ: (x, y, z) = (0, 1, –1).

Пример 1.7. Решение системы методом Гаусса.

Построим по данной системе расширенную матрицу системы .

Её необходимо с помощью элементарных преобразований привести к треугольному виду . Ниже главной диагонали должны быть нули.

Разрешены следующие элементарные преобразования, не меняющие пространства решений системы:

  • можно менять местами строки;

  • умножать строку на ненулевое число;

  • складывать или вычитать любые две строки, умноженные на любое число;

  • вычеркивать нулевые или пропорциональные строки.

Если в столбце есть 1, удобно переставить строки, поставив 1 на первое место. Умножим первую на 2, вычтем из второй:

~ .

Разделим 2-ю строку на 7, переставим с 3-й, первую умножим на 5, вычтем из второй, получаем:

~ .

Разделим 3-ю строку на 9 и вычтем 2-ю, имеем . Эта матрица приведена к треугольному виду. Первый этап закончен.

Построим теперь по ней систему уравнений: .

Приступаем ко второму этапу – обратный ход метода Гаусса. Находим из последнего уравнения z = –1; поднимаясь во второе и подставляя найденное z, находим y = 1; затем из первого находим х = 0. Итак, (x, y, z) = (0, 1, –1).

1.9. Определить ранг матрицы В (табл. 1.5).

Таблица 1.5

1

2

3

4

Матрица В

2 5 6

4 –1 5

2 –6 –1

1 2 1 4

0 5–1 4

–1 3 4 6

1 3 7 2 5

–1 0 4 8 3

3 6 10 –4 7

2 0 3 5 1

4 3 1 7 5

0 3 –5 –3 3

2 3 –2 2 4

Замечание. Для вычисления ранга матрицы удобно привести ее к треугольному виду с помощью элементарных преобразований. Количество ненулевых строк, оставшихся после приведения, равно рангу матрицы.

1.10. Решить систему уравнений различными методами. В таблице 1.6 указаны матрица системы А и столбец правых частей В.

Таблица 1.6

А

В

1

2

3

4

5

6

7

8

1.11. Исследовать систему на совместность и в случае совместности методом Гаусса найти общее решение, указать хотя бы одно базисное решение:

1) 2)

3) 4)

5) 6)

7) 8)

9)

10)

Соседние файлы в папке матем