Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
синтезы орган. соед_лаб практикум.doc
Скачиваний:
160
Добавлен:
12.08.2019
Размер:
4.84 Mб
Скачать

Превращения диазосоединений Азосочетание

Реакция азосочетания приводит к образованию азокрасителей – очень важного класса соединений. В лабораторной практике часто восстановлением азокрасителей получают окси-амино- и диаминосоединения. Таким образом, здесь азокраситель выступает в качестве промежуточного продукта.

Из всех приведенных выше форм диазосоединений единственной, способной вступать в реакцию азосочетания, является катион диазония.

Азосочетание является типичной реакцией электрофильного замещения. Те соединения, у которых возможно замещение атома водорода, связанного с углеродным атомом, на группу -N=N-Аr, называются азосоставляющими. Первичные ароматические амины, из которых получают соли диазония, принято называть диазосоставляющими.

В тех условиях, в которых обычно проводится реакция азосочетания (водная среда, низкая температура) катионы диазония являются слабыми электрофилами. Они могут вступать в реакцию только с такими ароматическими соединениями, которые содержат в ароматическом ядре наиболее сильные электронодонорные заместители, такие как -ОН, -NН2, -NНR, -NR2, где R - алкил. Реакции азосочетания могут быть записаны в виде следующих схем:

Азосочетание с аминами проводят в слабокислой среде, а с фенолами – в слабощелочной. В последнем случае образуются фенолят-ионы, которые являются гораздо более активными азосоставляющими, чем сами фенолы. Скорости сочетания фенолятов с катионом диазония в 1010 - 1012 раз больше, чем исходных неионизированных фенолов.

В реакцию азосочетания вступают свободные амины, а не их соли. В сильнокислой среде большая часть амина находится в инертной форме Ar-NH3+. В сильнощелочных растворах катион диазония превращается в диазотат-ион, и это также уменьшает скорость реакции. На рис. 23 схематически показан характер изменения скоростей азосочетания с аминами и фенолами при увеличении рН.

Хотя скорость азосочетания с аминами мало зависит от рН в пределах от 5 до 9, реакцию предпочитают вести в слабокислых растворах, так как амины в этих условиях лучше растворимы. Кислая среда необходима при использовании в качестве азосоставляющих первичных или вторичных аминов, которые в нейтральных и слабощелочных растворах превращаются в диазоаминосоединения.

При азосочетании образуются почти исключительно продукты пара-замещения наряду с небольшим количеством орто-изомеров.

Рис. 23. Изменение скорости (v) азосочетания диазоний-катиона с аминами и фенолами в зависимости от величины pH

Реакции солей диазония с выделением азота

Соли диазония неустойчивы и способны распадаться гетеролитически в растворителях с высокой диэлектрической проницаемостью:

Ar - N+N X Ar+ + N2 + X

или гомолитически (как правило, под действием катализаторов):

Ar - N+N X Ar. + N2 + X.

Направление распада зависит от аниона соли диазония и растворителя. Гомолизу способствуют в основном анионы слабых кислот, но в неводных растворах таким образом распадаются даже хлориды. Растворители с высокой диэлектрической проницаемостью способствуют гетеролитическому распаду (общая закономерность).

Диазосоединения широко используются для замены диазогруппы в аренах на различные функциональные группы. Иногда это единственный метод получения нужного продукта.

Ниже приведены наиболее часто применяемые в лаборатории синтезы с применением диазосоединений. Около каждой реакции указывается, если это достоверно известно, по какому механизму она протекает: ГТЛ (гетеролитически) или ГМЛ (гомолитически).

  1. Замещение диазониевой группы гидроксилом:

Ar-N+N + H2O Ar-OH + N2 + H+

(ГТЛ)

2. Замещение диазогруппы на Cl, Br, CN и CNS (реакция Зандмейера). Осуществляется путем разложения соли диазония в присутствии соответствующих координационных соединений меди(I) ([CuCl4]3, [CuBr4]3, [Cu(CN)4], [Cu(CNS)4]3):

Ar-N+N + X Ar-X + N2

(ГМЛ)

Доказано, что этот процесс идет через промежуточное образование арильного радикала. Поставщиком электрона, необходимого для гомолитического разрыва связи С-N, является ион меди в степени окисления +1 (схематично):

Далее ион Cu2+ вновь превращается в Сu+, забирая электрон у галогена, и радикал Х· образует ковалентную химическую связь с Ar·:

Таким образом, медь в реакции Зандмейера служит переносчиком электрона.

Образованием в промежуточной стадии арильных радикалов объясняется прохождение ряда побочных процессов при реакциях Зандмейера:

а) Образование диарилов:

Ar. + Ar. Ar-Ar

б) Образование производных азобензола:

3. Замещение диазогруппы на иод непосредственно действием йодистого калия на водный раствор соли диазония без катализатора:

Ar-N+N + I Ar-I + N2

В случае реакции с йодид-анионом катализатор не нужен, т.к. роль переносчика электрона способен выполнить сам иодид-ион.

4. Разложение сухого тетрафторбората диазония с образованием фторзамещенных:

[Ar-N+N] [BF4] Ar-F + BF3 + N2

(ГТЛ)

5. В ряде случаев диазогруппа может быть замещена на сульфохлоридную группу и нитрогруппу:

Ar-N+N Cl + SO2 Ar-SO2Cl + N2

Ar-N+N SO4H + NaNO2 ArNO2 + N2 + NaHSO4

6. Взаимодействие диазониев с полисульфидами щелочных металлов:

Запрещается применять эту реакцию к диазониям, не содержащим групп, сообщающих растворимость в щелочной среде (-ОН, -СООН, -SО3Н), так как в этом случае наблюдаются сильные взрывы.

Если при диазотировании ароматических аминов образуется нерастворимая в воде соль диазония (например, при диазотировании сульфаниловой кислоты), ее необходимо перерабатывать только во влажном виде из-за чрезвычайной взрывчатости высушенных диазосоединений. Воронку и фильтр, на которых производилось отсасывание диазония, следует немедленно обмыть водой.