Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Всякое / Молоко / Лекции по Биохимии.doc
Скачиваний:
2350
Добавлен:
17.06.2017
Размер:
7.26 Mб
Скачать

6.4.2. Распад гликогена

Распад гликогена (мобилизация гликогена до глюкозы) активируется в постабсортивном периоде (при голодании, усиленной физической нагрузке). В печени функционируют два пути распада гликогена: амилолитический путь и фосфоролитический путь

Амилолитический путь заключается в гидролитическом распаде гликогена:

Этот путь катализируют α-амилаза, которая расщепляет внутренние 1,4 -α-гликозидные связи и γ - амилаза, которая отрывает концевые остатки глюкозы.

Основным способом распада гликогена является фосфоролитический путь при участии Н3РО4:

Глюкозо-1-фосфат переходит в глюкозо-6-фосфат под действием ферментафосфоглюкомутазы.

В печени имеются фермент – глюкозо-6-фосфатаза, способный отщеплять остатки Н3РО4 от глюкозо-6-фосфата, переводя глюкозо-6-фосфат в свободную глюкозу.

Фосфорилаза расщепляет только 1,4 -α-гликозидные связи. В расщеплении 1,6 -α-гликозидных связей участвует дополнительный фермент – 1,6 -α-гликозидаза.

Ключевым ферментом распада гликогена является фосфорилаза. В распаде гликогена участвуют активная фосфорилированная форма фосфорилазы (фосфорилаза «А»). Она образуется из неактивной фосфорилазы «В» путём фосфорилирования и увеличения олигомерности. Фосфорилаза «В» является нефосфорилированным димером, а фосфорилаза «А» представляет собой фосфорилированный тетрамер.

Синтез и распад гликогена подвержены авторегуляции при изменении концентрации глюкозы по приведенной схеме.

У детей обмен гликогена имеет свои особенности. В последний месяц внутриутробного развития активируется синтез гликогена, и его содержание достигает до 10% массы печени. В процессе родов происходит усиленный распадгликогена на энергетические цели, и его содержание резко снижается. Синтез гликогена активируется в первые 2-3 месяца после рождения.

6.5. Обмен глюкозы в тканях

Основным метаболитом углеводного обмена является глюкоза. Её содержание в тканях, плазме крови поддерживается на определённом уровне благодаря сбалансированности процессов образования и распада. Фонд глюкозы в тканях пополняется за счёт поступления всосавшихся в кишечнике моносахаридов, при распаде гликогена в печени и путём глюконеогенеза (синтеза глюкозы из других веществ). Глюкоза в тканях расходуется на синтез гликогена, липидов, некоторых аминокислот, производных глюкозы, на образование энергии.

6.5.1. Окисление глюкозы в тканях

Основная функция глюкозы – энергетическая, т.е. при окислении глюкозы в тканях высвобождается энергия. При окислении глюкоза переходит в пировиноградную кислоту (ПВК), которая затем либо полностью окисляется в аэробных условиях, либо превращается в молочную кислоту (лактат) в анаэробных условиях. Процесс окисления глюкозы называется гликолизом.

Чаще под гликолизом понимают превращение глюкозы в молочную кислоту в анаэробных условиях. Распад глюкозы в анаэробных условиях – анаэробный гликолиз.

6.5.1.1. Анаэробное окисление глюкозы

Анаэробный гликолиз включает 2 этапа:

  • Активация глюкозы с затратой АТФ

  • Окислительный этап, идущий с образованием АТФ

На первом этапе глюкоза расщепляется на 2 триозы:

Таким образом, на первом этапе гликолиза на активирование глюкозы затрачивается 2 молекулы АТФ и образуется 2 молекулы 3-фософоглицеринового альдегида.

На второй стадии окисляются 2 молекулы 3-фосфоглицеринового альдегида до двух молекул молочной кислоты.

Значение лактатдегидрогеназной реакции (ЛДГ) заключается в том, чтобы в безкислородных условиях окислить НАДН2в НАД и сделать возможным протекание глицеро-фосфатдегидрогеназной реакции.

Суммарное уравнение гликолиза:

глюкоза + 2АДФ + 2Н3РО4→ 2лактат + 2АТФ + 2Н2О

Гликолиз протекает в цитозоле. Его регуляцию осуществляют ключевые ферменты –фософофруктокиназа,пируваткиназа. Эти ферменты активируются АДФ и НАД, угнетаются АТФ и НАДН2.

Энергетическая эффективность анаэробного гликолиза сводится к разнице между числом израсходованных и образовавшихся молекул АТФ. Расходуется 2 молекулы АТФ на молекулу глюкозы в гексокиназной реакции и фосфофруктокиназной реакции. Образуется 2 молекулы АТФ на одну молекулу триозы (1/2 глюкозы) в глицерокиназной реакции и пируваткиназной реакции. На молекулу глюкозы (2 триозы) образуется соответственно 4 молекулы АТФ. Общий баланс: 4 АТФ – 2 АТФ = 2 АТФ. 2 молекулы АТФ аккумулируют в себе ≈ 20 ккал, что составляет около 3% от энергии полного окисления глюкозы (686 ккал).

Несмотря на сравнительно невысокую энергетическую эффективность анаэробного гликолиза, он имеет важное биологическое значение, состоящее в том, что это единственныйспособ образования энергии в безкислородных условиях. В условиях дефицита кислорода он обеспечивает выполнение интенсивной мышечной работы в начальный период физической нагрузки.

В тканях плодаанаэробный гликолиз очень активен в условиях дефицита кислорода. Он остаётся активным в периодноворожденности, постепенно сменяясь на аэробное окисление.

Дальнейшее превращение молочной кислоты

  • При интенсивном поступлении кислорода в аэробных условиях молочная кислота превращается в ПВК и через ацетил КоА включается в цикл Кребса, давая энергию.

  • Молочная кислота транспортируется из мышц в печень, где используется на синтез глюкозы – цикл Р. Кори.

Цикл Кори

  • При больших концентрациях молочной кислоты в тканях для предотвращения закисления (ацидоза) она может выделяться через почки и потовые железы.