Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Всякое / Молоко / Лекции по Биохимии.doc
Скачиваний:
2347
Добавлен:
17.06.2017
Размер:
7.26 Mб
Скачать

8.10. Особенности обмена отдельных аминокислот

8.10.1. Обмен глицина и серина

Глицин и серин являются источниками одноуглеродных радикалов.

Глицин – заменимая аминокислота. Он широко используется в тканях в следующих процессах:

  • синтез гема;

  • синтез креатина;

  • синтез пуриновых нуклеотидов;

  • входит в состав глютатиона;

  • участвует в процессах детоксикации;

  • переходит в углеводы через образование пирувата;

  • служит источником метиленового радикала (СН2 =).

Метиленовый радикал используется для биосинтетических процессов в комплексе с активной формой фолиевой кислоты - тетрагидрофолевой кислотой (ТГФК). Основная реакция распада глицина, ведёт к образованию метилен - ТГФК

Серин– заменимая аминокислота. Используется в многочисленных биосинтетических процессах:

  • синтез фосфолипидов (фосфатидилсерин);

  • синтез сфингозина и сфинголипидов;

  • переходит в углеводы через стадию образования пирувата.

  • источник метиленового радикала;

8.10. 1.1. Фолиевая кислота

Фолиевая кислота (Витамин Вс, В9,, антианемический витамин) включает в свой состав птеридин, парааминобензойную кислоту, глютаминовую кислоту. Она содержится в зелёных частях растений, в дрожжах. Суточная потребность в ней составляет до 2 мг. Биологическая роль: в виде ТГФК является переносчиком одноуглеродных радикалов от серина и глицина, использующихся для синтеза нуклеиновых кислот, аминокислот. Фолиевая кислота переходит в ТГФК при участии фермента фолатредуктазы с присоединением 4-х атомов водорода. В клинической практике в качестве противоопухолевых препаратов используют антивитамииы фолиевой кислоты, которые имеют структуру, близкую к птеридину и являются ингибиторами фолатредуктазы, вследствие чего блокируют синтез нуклеиновых кислот в опухолях. В качестве бактериостатических препаратов применяют сульфаниламидные соединения, имеющие структуру, сходную с парааминобензойной кислотой. В силу этого сульфаниламиды блокируют в микроорганизмах синтез фолиевой кислотой, которая является фактором роста микроорганизмов. Авитаминоз фолиевой кислоты проявляется в виде анемии.

8.10. 2. Обмен серосодержащих аминокислот цистеина и метионина

Цистеин и метионин являются источником: серы и метильных групп.

Цистеинпри окислении, декарбоксилировании, трансаминировании переходит в таурин и серную кислоту, входит в состав глютатиона, через стадию пирувата может использоваться для синтеза углеводов.

Таурин используется на синтез парных жёлчных кислот и участвует в развитии нейросетчатки, головного мозга у плода и в раннем детском возрасте. Образующаяся серная кислота используется на синтез кислых гликозаминогликанов. В активной форме в виде ФАФС она участвует в обезвреживании токсичных продуктов в печени

Обмен цистеина

Метионин - незаменимая аминокислота, донатор метильных групп в реакциях метилирования.

В реакциях трансметилирования метионин участвует в активной форме – S+-(СН3) - аденозилметионин (SАМ), образующийся при взаимодействии метионина с АТФ.

Общая схема реакции метилирования различных веществ (R) с участием фермента метилтрансферазы имеет вид:

S+(СН3) - аденозилметионин +R→R-СН3 + аденозилгомоцистеин.

Примеры:

Метионин используется в многочисленных биосинтетических процессах:

  • синтез холина;

  • синтез тимина, с последующим включением его в ДНК;

  • синтез адреналина;

  • синтез карнитина – переносчика жирных кислот при их β - окислении;

  • синтез креатина – азотистого вещества мышц;

  • реакции обезвреживания;

  • донор серы.

В реакции метилирования аденозилметионин, отдавая СН3–радикал, превращается в аденозилгомоцистеин, который затем распадается на аденозин и гомоцистеин. В последующем гомоцистеин может дальше превращаться двумя способами: при взаимодействии с серином переходит вцистеинили при участии ТГФК и вит. В12 реметилируется вметионин.