Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Всякое / Молоко / Лекции по Биохимии.doc
Скачиваний:
2349
Добавлен:
17.06.2017
Размер:
7.26 Mб
Скачать

8.6.2.2. Непрямое дезаминирование

В тканях для большинства аминокислот реакции трансаминирования и окислительного дезаминирования тесно друг с другом связаны, Сочетание их получило название непрямого дезаминирования. Так как возможности окислительного дезаминирования большинства аминокислот очень малы, вначале они вступает в реакцию трансаминирования с α - кетоглютаровой кислотой. Образовавшаяся при этом глютаминовая кислота в дальнейшем активно подвергается окислительному дезаминированию под действием глютаматдегидрогеназы – высоко активного митохондриального фермента.

Около трети аминокислот включается в непрямое дезаминирование.

8.6.2.3. Внутримолекулярное дезаминирование

В процесс внутримолекулярного дезаминирования вступают аминокислоты гистидин, серин, треонин, цистеин. Например, из гистидина происходит выделение NН3за счёт внутримолекулярной перестройки с образованием уроканиновой кислоты:

Серин в результате внутримолекулярного дезаминирования переходит в пировиноградную кислоту

У детейпроцессы трансаминирования и дезаминирования идут более активно, чем у взрослых.

8.7. Декарбоксилирование аминокислот. Биогенные амины

Декарбоксилирование аминокислот – ферментативный процесс высвобождения СО2из СООН - групп аминокислот с образованием аминов.

Наиболее активно в процесс деркарбоксилирования включаются аминокислоты гистидин, тирозин, глютамат, триптофан. Образующиеся амины называются биогенными аминами, поскольку они, как правило, обладают широким спектром физиологических эффектов, влияют на тонус сосудов, являются нейромедиаторами, участвуют в воспалительных реакциях. К основным биогенным аминам относятся гистамин, серотонин, катехоламины, гамма-аминомасляная кислота, полиамины.

Гистаминобразуется при декарбоксилировании аминокислоты гистидина. Он синтезируется в тучных клетках, накапливается в секреторных гранулах, выделяется при раздражении клеток.

Гистамин оказывает разнообразные биологические эффекты: вызывает расширение сосудов, снижает артериальное давление, увеличивает тканевую проницаемость, вызывает местный отёк, стимулирует желудочную секрецию, обладает бронхоспатическим эффектом. В высокой концентрации он является медиатором воспалительных и аллергических реакций.

Серотонинобразуется при декарбоксилировании гидрокситриптофана. Он синтезируется в хромаффиннных клетках, в некоторых ядрах подкорковых структур, в тромбоцитах.

Эффекты серотонина: вызывает спазм сосудов, повышение артериального давления, стимулирует перистальтику кишечника, участвует в терморегуляции, в механизмах сна, памяти, является источником для синтеза гормона мелатонина, влияет на эмоциональные реакции человека.

Катехоламины (дофамин, адреналин, норадреналин) синтезируются из аминокислоты тирозина.

Дофамин – возбуждающий медиатор, при его дефиците развивается болезнь Паркинсона (адинамия, ригидность, тремор). Адреналин вызывает спазм сосудов, повышают артериальное давление, стимулирует работу сердца, является гормоном.

Норадреналин в основном выполняет нейромедиаторные функции.

Гамма-аминомасляная кислота (ГАМК)образуется при декарбоксилировании глютаминовой кислоты, является тормозным медиатором, улучшает кровоснабжение головного мозга, активирует окислительные процессы в нём.

Полиамины (спермин, спермидин)синтезируются из орнитина и метионина, участвуют в регуляции процессов трансляции, транскрипции, репликации.

Так как биогенные амины очень активны, они быстро инактивируются в тканях. Распад биогенных аминовосуществляется несколькими способами: окисление, метилирование, дезаминирование. Основным способом инактивации биогенных аминов являетсяокислительное дезаминированиепод действием ферментов аминооксидаз (моноаминооксидаз, полиаминооксидаз).

Ингибиторы МАО применяются в качестве терапевтических средств.