Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМКД Математике каз готово.doc
Скачиваний:
1169
Добавлен:
06.03.2016
Размер:
10.61 Mб
Скачать

§3.5.Туындылардыц көмегімен функцияларды зерттеу 1. Функциялардың локальді экстремумі

Функцияның локальді экстремумдерінің анықтамаларын еске түсірейік.

Егер (1)

сәйкес (2) теңсіздігі орындалатындай саны бар болса, онда y=f(x) функциясы с—нүктесінде локальді максимумге (сәйкес локальді минимумге) ие болады дейді.

Егер (1) және (2) шарттарды

( сәйкес (2')

шарттарымен ауыстырсақ, онда с - локальді қатаң максимум (сәйкес, локальді қатаң, минимум) нүктесі деп аталады.

Анықтама. Егер х0 - нүктесінде f(x0) - үзіліссіз, f'(x0) = 0 немесе f'(x0) туындысы болмайтын (жоқ) болса, онда х0 f -функциясыньң күдікті нүктесі деп аталады.

Егер х0 f — функциясының экстремум нүктесі болса, онда Ферма теоремасы бойынша немесеболмаса, онда күдікті нүкте болады.

Бұган кepi тұжырым дұрыс емес. Мысалы, у = х3 функциясы үшін күдікті нүкте: Бірақх0 = 0 функцияның экстремум нүктесі емес, у = х3 функциясы өспелі. Сонымен х0 функцияның экстремум нүктесі болуы үшін оның күдікті нүкте болуы қажетті (бipaқ жеткілікті емес).

1 - теорема, (экстремумның жeткiлiктi шарты). y = f(x) функциясы кесіндісінде үзіліссіз және мен аралықтарда дифференциалданатын болсын.

Егер мен аралықтарында f'(x) туындысының таңбалары қарама-қарсы болса, онда х0 экстремум нүктесі. Атап айтқанда:

а) егер

болса, онда хй -локальді максимум;

б) егер болса,онда х0 - локальді минимум нуктесі;

в) және аралықтарында f'(x) таңбасы бірдей болса, онда нүктесінде локальді экстремум жоқ.

2 - теорема. фунциясының х0 нүктесінде екінші туындысы бар және болсын. Онда

1) егер болса, онда-локальді минимум;

2) егер болса, онда -локальді максимум;

3) егер болса, онда -нүктесі экстремум нүктесі болуы да болмауы да мүмкін.

Функциялардың кесіндідегі ец үлкен және ең кіші мәндері

[а,b] кесіндісінде үзіліссіз f функциясының ең үлкен (ең кіші) мәнін табу керек болсын. Оның қандай да бір нүктесінде болатыны белгілі.

Ендеше тек келесі үш жағдай болуы мүмкін 1)

Егер . болса, онда - локальді экстремум нүктесі екені түсінікті.

Егер аталған нүктелер xl,x2,...,xm ақырлы жиын құраса, онда

(3)

Қорытынды. № 41-42 лекциялардан кейін студенттер туындыны пайдаланып функцияның монотондық аймағын таба алады және оның экстемумын немесе ең үлкен немесе ең кіші мәндерін таба алады.

43-44 лекциялар. Туынды көмегімен функцияның дөңестігін, иілу нүктелерін анықтау. Функция асимтотасы және оны толық зерттеп графигін салу.

Функциялардың дөңестігі. Иілу нүктелері

f(x) функциясы I-аралығында берілсін. Анықтама. Егер f(x) –тің графигін кез келген Al(x],f(xl)) жәнеА22,/(х2)) екі нүктесінің арасындағы доға осы доғаны керетін хордадан жоғары жатпаса, онда f(x) — функциясы I аралығында дөңестігі төмен бағытталған, қысқаша, ойыс функция деп аталады

Егер g(x) = -f(x) функциясы I аралығында ойыс болса, онда f(x) - функциясы I аралығында доңестігі жоғары бағытталған, қысқаша, дөңес функция деп аталады (30-сурет).

Әрине f(x) ойыс функция болса, онда - f(x) дөңес болады.

1 - теорема. Егер f'(x) функциясының I аралығында туындысы бар болса, онда f'(x) ойыс (дөңес) функция болу үшін f'(x) функциясы I аралығында кемімейтін (өспейтін) функция болуы қажетті және жеткілікті.

f(x) функциясының I аралығында екінші ретті туындысы бар болса, онда f'(x) функциясы I аралығында кемімейтін (өспейтін) болуы шарттарымен пара-пар болғандықтан келесі теоремаға келеміз.

2 - теорема. Егер I аралығында f(x) функциясының екінші ретті туындысы бар болса, онда ) ойыс (дөңес) функция болуы үшін теңсіздігі орындалуы қажетті және жеткілікті.

Ойыс (дөңес) функциялардың геометриялық сипаты келесі теоремадан көрінеді (дәлелдемесін келтірмейміз).

Теорема. f(x) - аралығында дифференциалданатын функция болса, онда - f(x) ойыс (дөңес) функция болуы үшін, оныңт графигі өзінің әрбір жанамасынан төмен (жоғары) жатпауы қажетті, және жеткілікті.

Анықтама. f(х) функциясы (а,b) аралығында анықталған және үзіліссіз болсын. Егер нүктесінің белгілі бip оң және сол жақты маңайларында f(х) функциясыныц дөңестігі қарама-қарсы бағытталған болса, онда нүктесі f(х) - тің графигін иілү нүкте деп

аталады.

3 - теорема (иілу нүктесінің қажетті шарты). аралығында

f(х) дифференциалданатын, ал - нүктесінде екінші ретті туындысы бар функция болсын. Егер нүктесі болса, онда

4 - теорема (иілу нүктесінің, жеткілікті шарты). Егер f(х) функциясы нүктесінің белгілі бip - маңайында үзіліссіз болып, аралығында туындысы бар және ол кемімейтін (өспейтін), аралығында туындысы бар және ол өспейтін (кемімейтін) болса, онда - иілу нүктесі.

Басқаша айтқанда, (х- өсу бағытында) х0- нүктесінен өткенде f"(x)- екінші ретті туындының таңбасы өзгерсе онда (xa,f(xu))- иілу нүктесі болады.

Сонымен, функцияның иілу нүктелерін тек қана f"(xa) = 0 орындалатын немесе f"(x) - болмайтын (жоқ) нүктелердің (ондай нүктелерді функцияның екінші ретті күдікті нүктелері деп те атайды) іздеу керек.