Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Укрощение ядра.pdf
Скачиваний:
867
Добавлен:
26.08.2013
Размер:
5.92 Mб
Скачать

Разведанные запасы природного урана при широком применении технологии быстрых реакторов с замкнутым топливным циклом, в практическом использовании которой Россия обладает уникальным опытом, а также при использовании уран-плутониевого топлива в тепловых реакторах обеспечивают на несколько столетий поддержание ресурсного потенциала по обеспечению АЭС топливом.

Отмеченные обстоятельства являются фундаментом разработанной Минатомом «Стратегии развития атомной энергетики России», которая предусматривает увеличение общей установленной электрической мощности АЭС с 21,2 ГВт в 2000 году до 30 ГВт в 2010 году, до 50 ГВт в 2020 году и доведение мощностей АЭС до 60 ГВт к 2030 году. При этом доля атомной энергетики в производстве электричества возрастет до 33%.

Таблица 7.14. Прогноз развития атомной энергетики

 

1990 год

2000 год

2005 год

2010 год

2020 год

Рост, %

 

 

 

 

 

 

 

Выработка всего, млрд. кВт час

1082

878

 

1055

1240

141

Выработка АЭС

 

130

174

212

340

261

Доля АЭС в общей выработке

 

15

 

20

27

 

Доля АЭС в первичных энергоресурсах, %

 

2,9

 

3,9

5,1

 

Мощность

20

21,2

25

30

52

250

7.3. Поставка ядерного топлива из оружейного урана в США и национальные интересы России

Соглашение о поставке ядерного топливного материала США, получаемого из оружейного урана демонтируемых ЯБП, было подписано Правительством РФ в 1993 году. Поставки топлива и их оплату предполагается осуществлять поэтапно в течение примерно 20 лет по исполнительным контрактам. Речь идет о переработке в топливный материал 500 тонн оружейного урана и продаже этого топлива США за 11,8 миллиардов долларов.

Стоимость контракта, составляющая 11,8 миллиардов долларов, определялась на основании мировых цен на обогащенный уран, действовавших на момент заключения контракта. С 1995 по 1999 год уже переработано около 82 тонн ВОУ и поставлено НОУ на сумму в 1,9 миллиарда долларов.

Этот крупный контракт в условиях экономических проблем России в значительной степени содействовал сохранению атомной отрасли. Без этих средств при недостаточном и нерегулярном бюджетном финансировании обострились бы вопросы с безработицей, острыми социальными конфликтами и речь могла бы идти о полной ликвидации ряда ключевых звеньев ядерного комплекса.

При подготовке контракта американская сторона настаивала на непосредственных поставках высвобождаемого при демонтаже оружейного урана. В этом случае она могла непосредственно контролировать факт оружейного характера поставки. Это связано с тем, что мировой рынок ядерного топлива для АЭС перенасыщен и обладает значительными излишками сырья. В этих условиях Россия была лишена возможности прямых поставок на мировой рынок ядерного топлива за пределами давно сформировавшихся ограничений квотируемой системы. Использование оружейного урана в этих целях было нашей единственной практической возможностью. Благодаря принципиальной позиции Минатома России, удалось договориться о поставках США топливного материала с концентрацией U-235 4,4%, полученного переработкой в РФ оружейного урана его многократным разбавлением U-238.

Ежегодные потребности в эквивалентном ядерном топливе можно оценить, исходя из необходимости загрузки в реактор топливного урана в количестве 20 тонн на 1 ГВт электрической мощности в расчете на уровень обогащения в 4% U-235. В соответствии с этим, при уровне мощности мировой ядерной энергетики в 350 ГВт электрической мощности ежегодная потребность в эквивалентном топливе (4% U-235) составляет около 7000 тонн.

Для США мощность ядерной энергетики составляет 105 ГВт электрических и, соответственно, их ежегодная потребность в эквивалентном ядерном топливе составляет 2100 тонн.

Отметим, что в масштабах атомной энергетики США размер наших топливных поставок, хотя и значителен, однако не является слишком большим, и, тем более, не имеет определяющего характера. Этого топлива достаточно для обеспечения работ АЭС США в течение 5,5 лет. Общий объем поставки ядерного топлива эквивалентен мировому обороту этого материала за период менее двух лет.

Из высвобождаемого оружейного урана в рамках контракта может быть произведено около 15000 тонн топливного материала по цене 1200 долларов за килограмм. Отметим, что эта цена соответствует мировым ценам на аналогичный топливный материал, производимый из природного урана. Эти цены составляют 700–1000 долларов за килограмм и испытывают колебания в зависимости от спроса и предложения и сроков длительности контрактов.

При оценке достоинств контракта необходимо учитывать, что поставка материала в США затрагивает только часть оружейного урана России, и остающегося материала вполне достаточно для обеспечения требований нашего ядерного арсенала.

Основные этапы программы ВОУ-НОУ:

1993 год: Соединенные Штаты и Россия подписывают межправительственный договор, согласно которому Россия должна переработать 500 тонн высокообогащенного урана (ВОУ), изъятого из ядерных боеголовок, в низкообогащенный уран (НОУ) для закупки его Соединенными Штатами с целью использования в качестве топлива для получения электроэнергии;

1994 год: USEC и «Техснабэкспорт», в качестве ответственных исполнителей Соединенных Штатов и России, подписывают контракт на 20 лет на сумму 8 миллиардов долларов. В рамках данного контракта Россия переработает 500 тонн ВОУ в НОУ, а корпорация USEC закупит НОУ у России и продаст своим предприятиям-клиентам для использования в качестве топлива на атомных электростанциях. Россия начинает осуществлять техническую подготовку выполнения контракта;

1995 год: начало поставок топлива корпорации USEC по программе ВОУ-НОУ. Первый груз прибывает в корпорацию USEC в Портсмут, на завод в штате Огайо 23 июня;

1995 год: получение поставок корпорацией USEC: 186 тонн НОУ, полученных из 6 тонн ВОУ, что эквивалентно приблизительно 240 ядерным боеголовкам;

1996 год: корпорация USEC получила 371 тонну НОУ, полученную разбавлением 12 тонн ВОУ;

1997 год: корпорация USEC получила 480 тонн НОУ, полученных разбавлением 18 тонн ВОУ;

1998 год: USEC размещает заказ на 724 тонны НОУ, полученные из 24 тонн ВОУ. Поставки 1998 календарного года составляют 450 тонны НОУ, полученных из 14,5 тонн ВОУ;

1999 год: в июле 1999 года Россия завершает поставки 1998 года по ВОУ, переработанного в НОУ. Начинаются поставки НОУ, полученного из 21,3 тонны ВОУ, по заказу 1999 года. В феврале 2000 года Россия завершает поставки 1999 года;

2000 год: получение поставок корпорацией USEC 858 тонн НОУ, полученных из 30 тонн ВОУ.

7.4.Энергетические технологии XXI века и ядерные топливные циклы

Ожидаемое к середине нынешнего века удвоение населения Земли, в основном за счет развивающихся стран, и приобщение все новых из них к индустриальному развитию, приведут, как минимум, к удвоению мировых потребностей в первичной энергии и к утроению – в электрической энергии.

Разрыв в уровне энергопотребления и благосостояния между развитыми и развивающимися странами огромен.

Преодоление этого разрыва может стать ведущей тенденцией и условием устойчивости мирового развития в XXI веке.

Весьма вероятно, что рост производства энергии будет сопровождаться постепенным истощением дешевых ресурсов углеводородного топлива и их удорожанием. Все большее влияние на мировой топливный рынок будет оказывать стремление стран сохранить свои ресурсы углеводородного топлива как основного предмета экспорта, а также в качестве топлива для транспорта и сырья для химической промышленности. Возрастет опасность международных конфликтов вокруг источников нефти и газа.

Таблица 7.15. Проект энергетической стратегии до 2020 года

Газ, млрд. куб. м

640

583

654

700

Нефть, млн. тонн

516

323

510

440

Уголь, млн. тонн

396

258

430

450

Еще более близкими могут оказаться пределы потребления химического топлива, в том числе и ресурсов угля, связанные с выбросами продуктов горения и глобальными климатическими изменениями. Меры по снижению вредных выбросов увеличат капитальные затраты на энергетику наряду с ростом цены топлива.

Доли стран в мировой эмиссии СО2 в 1998 году составляли:

США

– 24,6%

Китай

– 13%

Россия

– 6,4%

Япония

– 5%

Индия

– 4%

Германия

– 3,8%.

АЭС с электрической мощностью в 1 ГВт экономит 7 миллионов тонн выбросов СО2 в год по сравнению с ТЭЦ на угле, и 3,2 миллиона тонн выбросов СО2 по сравнению с ТЭЦ на газе.

Можно говорить лишь о вероятности того или иного развития событий на длительную перспективу. Но жизненная важность надежного энергообеспечения и крайняя инерционность топлив- но-энергетического хозяйства с его масштабами и капиталоемкостью требуют заблаговременных мер в расчете на осуществление неблагоприятных сценариев развития. Главной задачей является развитие новых энергетических технологий, способных к крупномасштабному и экономичному замещению органического топлива. Приходится признать, что научные исследования пока не привели к появлению экономически конкурентоспособных технологий такого рода.

При множестве полезных применений новые возобновляемые источники энергии из-за крайне низкой и неравномерной плотности ее потока пока не могут экономически конкурировать с тепловыми машинами в «большой» энергетике. Исключениями служат гидроэнергия и фотосинтез, где сами природные силы осуществляют концентрирование и аккумулирование потоков солнечной энергии. Но их применение имеет свои экологические и экономические ограничения.

Управляемому термоядерному синтезу еще предстоит техническая и экономическая реализация. Полувековой практический опыт развития ядерных реакторов позволяет рассматривать их в качестве одного из реальных направлений энергетического развития. Но рост мировой энергетики, основанный на урановых тепловых нейтронах, ограничен ресурсами дешевого урана, а для энергетики большого масштаба не нашли пока убедительных решений проблемы безопасности АЭС и ра-

диоактивных отходов.

Ряд специалистов Минатома России, однако, смотрит с оптимизмом на будущее ядерной энергетики.

Между тем, исследования последних лет показывают, что ядерная технология, отвечающая требованиям большой энергетики по безопасности и экономике, может быть создана, не уходя слишком далеко от того, что освоено в мирной и военной ядерной технике. Если в ближайшие годы заинтересованные государства осознают жизненную необходимость своевременного решения зада-

чи и выберут определенную концепцию, ее техническая разработка и демонстрация могут быть выполнены в разумные сроки в пределах 10–15 лет.

Это откроет путь к созданию в XXI веке ядерной энергетики, берущей на себя существенную часть прироста мировых потребностей в топливе и энергии. Это соответствует росту ядерной энергетики от нынешнего уровня в 350 ГВт к середине века на порядок, а до конца века – еще в 2–3 раза.

Принципы выбора ядерной технологии следующего этапа вытекают из достаточно общих представлений об облике ядерной энергетике будущего.

При потреблении легководными реакторами около 180 тонн природного урана в год на 1 ГВт электрической энергии и ресурсах урана в 13 миллионов тонн, эти реакторы выработают приблизительно 50000 ГВт лет электроэнергии и произведут 2 миллиона тонн ОЯТ и от 15000 до 20000 тонн плутония. Повторное использование плутония в MOX-топливе легководных реакторов позволило бы на 20–25% увеличить топливные ресурсы реакторов. Но высокая стоимость использования MOX-топлива в тепловых реакторах не стимулирует расширение этих производств, а распространение в мире технологии, требующей извлечения плутония, увеличит риск распространения ядерного оружия. Малоэффективное сжигание плутония в тепловых реакторах ограничит или полностью закроет возможности создания на следующем этапе крупномасштабной ядерной энергетики на бридерах.

Многие развивающиеся страны проявляют интерес к тяжеловодным реакторам, позволяющим использовать природный уран и обеспечивающим независимость от поставщиков обогащенного урана. Увеличение их доли в ядерной энергетике первого этапа (сейчас 5%) приведет к некоторой экономии природного урана (примерно в 1,5 раза на реактор) и к увеличению производства плутония (примерно в два раза на реактор). Глубина выгорания топлива, в 4–6 раз меньшая в сравнении с легководными реакторами, увеличит накопление отработавшего топлива и потребности в его хранилищах.

Тепловые реакторы разных типов, вероятно, найдут применение в более отдаленной перспективе, оказываясь предпочтительными в некоторых секторах энергопроизводства: малые и средние атомные станции для удовлетворения локальных нужд в тепле и электричестве удаленных районов, куда проведение линий электропередачи и доставка топлива затруднены и дороги, или технологических потребностей в высокотемпературном тепле. Для этого тепловые реакторы должны будут в дальнейшем перейти на топливный уран-ториевый цикл с коэффициентом воспроизводства 0,8–1 с покрытием дефицита в U-233 бридерами.

Но основной сферой применения ядерной энергии, наиболее вероятно, останется централизованное производство электричества на крупных АЭС мощностью масштаба 1 ГВт с его передачей в энергосети. Электричество остается наиболее универсальной и удобной для передачи и конечного использования формой энергии: его производство растет наиболее быстро и займет в XXI веке преобладающее место в потреблении топлива.

Накопленный (в том числе в России) опыт по строительству и эксплуатации высоковольтных линий электропередачи, а возможно, и освоение в XXI веке экономичных линий открывают возможности передачи электричества от крупных АЭС на тысячи километров и расширения его экспорта.

По этим соображениям крупномасштабное развитие ядерной энергетики, предполагает строительство в основном крупных АЭС. Подобные масштабы возможны только на бридерах с коэффициентом воспроизводства больше единицы.

Важнейшей задачей этого этапа является рентабельная и безопасная утилизация плутония, производимого реакторами первого этапа. В начале этого пути важной задачей является утилизация в MOX-топливе оружейного плутония.

По физическим и техническим принципам конструкции и управления быстрые реакторы большой мощности с жидкометаллическим охлаждением проще легководных и других тепловых реакторов, к тому же обладают более высокой эффективностью использования топлива и энергии, а значит могут быть и дешевле, если для них будут найдены лучшие технические решения. Высокая стоимость первых быстрых реакторов и трудности с обеспечением безопасности были связаны с использованием в них химически высокоактивного натрия. Предотвращение его контакта с водой и воздухом при нормальной эксплуатации и в авариях требует трехконтурной схемы охлаждения, страховочного корпуса, сложных систем контроля и защиты парогенераторов, перегрузки топлива и

влияет на вспомогательное оборудование и сооружения АЭС. Возможность возгорания и закипания натрия в авариях с учетом положительного эффекта реактивности не позволяет в полной мере реализовать присущие быстрым реакторам качества безопасности.

Одним из основных мотивов применения в первых быстрых реакторах легкого и теплопроводного натриевого теплоносителя служила его способность отводить высокие тепловые потоки от топлива при увеличении энерговыработки топлива и коэффициента воспроизводства. В послевоенные десятилетия темпы роста производства электроэнергии достигали 6–7% в год (в СССР до 12% в год), и высокое воспроизводство рассматривалось в качестве важного критерия при разработке быстрого реактора.

Теперь положение изменилась. Темпы роста энергетики снизились (утроение производства электричества за 50 с небольшим лет соответствует средним темпам 2% в год), накапливается большое количество Рu, так что коротких времен воспроизводства плутония не требуется. Значительный рост ядерных мощностей вполне может быть осуществлен быстрыми реакторами с К ~ 1 и умеренной энергонапряженностью. 15 000–20 000 тонн плутония и 15 000–20 000 тонн урана-235 в отработавшем топливе реакторов первого этапа позволят ввести быстрые реакторы мощностью 4000 ГВт, использующие плутоний в смеси со слабообогащенным (1–4%) ураном (дообогащенный регенерат топлива тепловых реакторов). По мере стабилизации ядерной энергетики эти реакторы перейдут в цикл уран-плутоний.

При оптимальном К = 1,05 к началу XXII века ядерные мощности могут достичь 8000 ГВт за счет избыточного воспроизводства плутония. Поэтому разработка новых бридеров может быть подчинена исключительно достижению экономичности и безопасности.

Замена натрия на химически пассивный высококипящий теплоноситель, отказ от уранового бланкета при обеспечении внутреннего воспроизводства К ~ 1, использование вместо оксидного плотного и теплопроводного топлива соответствуют этим целям. Эти и другие меры позволяют создать экономичный быстрый реактор большой мощности, обладающий качественно более высоким уровнем безопасности.

Избыток нейтронов в быстром реакторе в цикле уран-плутоний (без уранового бланкета) и высокий поток быстрых нейтронов обеспечивают быстрым реакторам преимущество в трансмутации долгоживущих радионуклидов для решения проблемы радиоактивных отходов без создания специальных «сжигателей». Равновесный состав топлива создает предпосылки к применению технологии его переработки, сводящейся в основном к не очень глубокой очистке от продуктов деления, исключающей извлечение с ее помощью плутония. Использование такой технологии в «неядерных» странах обеспечивало бы определенную степень их независимости от ядерных стран, не нарушая международного режима нераспространения.

По мнению министра по атомной энергии А.Ю. Румянцева, с точки зрения Киотского протокола, атомная энергетика идеальна, а быстрые «реакторы имеют концепцию внутренней безопасности и отвечают соблюдению режима нераспространения, сжигая плутоний».

При освоении бридинга и решении проблемы радиоактивных отходов, главным образом путем трансмутации долгоживущих актиноидов, не видно ограничений в длительности функционирования ядерной энергетики со стороны ресурсов дешевого топлива и накопления радиоактивных отходов. Но замкнутая концепция ядерного развития должна предусматривать и завершающий ее этап с выводом из эксплуатации АЭС и ликвидацией большого количества радиоактивных веществ, содержащихся в реакторах. Это потребует эффективных «сжигателей» без воспроизводства ядерного горючего, что придает смысл ведущимся сейчас поискам и исследованиям в этой области. Однако, если надежды на не слишком далекое создание экономичных и безопасных бридеров осуществятся, техническая разработка таких «сжигателей» явится задачей более отдаленного будущего.

Для реализации замкнутого топливного цикла необходимы разработка инфраструктуры, эффективное распределение технологических процедур во времени, определение критериев эффективности замкнутого ядерного топливного цикла, расчетное и экспериментальное обоснование поведения облученного ядерного топлива при транспортировании и длительном хранении, технология переработки нового топлива, совместимость технологии переработки с требованиями безопасной эксплуатации реакторов и нераспространения делящихся материалов.

Замкнутый топливный цикл снижает расходы урана, вовлекает в цикл плутоний, уменьшает радиоактивность и токсичность материалов для постоянного хранения, упрощает нераспространение ядерных материалов, улучшает перспективы экспорта реакторов, обеспечивает стабильную работу АЭС независимо от добычи урана, использование ценных радионуклидов и трансурановых элементов. В пользу замкнутого топливного цикла говорят трудности открытого цикла: ненадежность прогнозирования безопасности хранения облученного топлива на тысячи лет; отсутствие данных о длительной устойчивости конструкционных материалов; необходимость большого расхода дорогостоящих материалов при захоронении отходов; отсутствие методов расчета для подтверждения безопасности захоронения; необходимость специальных геологоразведочных работ большого объема; невозможность радиационно-эквивалентного захоронения.

Организация замкнутого топливного цикла включает в себя выбор АЭС, вида топлива, способа изготовления свежего топлива, способа переработки облученного топлива, способа хранения отходов переработки, способа размещения предприятий топливного цикла АЭС. Его экономичность зависит от мощности АЭС и глубины выгорания топлива, стоимости изготовления свежего и переработки облученного топлива, стоимости транспортировки топлива, хранения отходов, требований

котходам по содержанию актиноидов и долгоживущих продуктов деления.

8.ИНИЦИАТИВА ПРЕЗИДЕНТА РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ЭНЕРГЕТИЧЕСКОМУ ОБЕСПЕЧЕНИЮ УСТОЙЧИВОГО РАЗВИТИЯ

ЧЕЛОВЕЧЕСТВА

Выступая на специальной сессии Генеральной Ассамблеи ООН (Саммите тысячелетия) 6 сентября 2000 года Президент Российской Федерации В.В. Путин, в частности, сказал:

«Россия выступает за объединение усилий в интересах кардинального повышения эффективности нераспространения ядерного оружия. Этого можно добиться путем постепенного исключения из использования в мирной ядерной энергетике обогащенного урана и чистого плутония.

Исследования показывают, что это технически осуществимо. Более того, есть реальная возможность такого сжигания плутония и других радиоактивных элементов, которое может создать предпосылки для окончательного решения проблемы радиоактивных отходов.

В этой связи предлагаю под эгидой МАГАГЭ разработать и реализовать соответствующий международный проект».

В распространенном делегацией Российской Федерации в связи с выступлением В.В. Путина на Саммите документе отмечалось, что, к сожалению, двадцатый век не решил целого ряда ключевых проблем, в том числе важнейшей для человечества проблемы предотвращения военных кон-

фликтов. Ситуация усложняется тем, что распространение оружия массового поражения, и в первую очередь ядерного, остается серьезной угрозой человечеству.

Далее там же говорится, что другая угроза исходит от техногенной деятельности челове-

чества и ее влияния на окружающую среду. Выброс в атмосферу парникового газа, связанный с производством энергии, ведет к дальнейшей деградации экологии. Ситуация вряд ли улучшится в ближайшем будущем, поскольку развивающиеся страны, где в двадцать первом веке будет наиболее бурный рост производства энергии, не владеют современными технологиями, требующими значительных инвестиций, и будут полагаться на наиболее доступные источники энергии – сжигание угля и гидроэнергетику, наносящие самый большой ущерб экологии.

Следует добавить, что те из этих стран, которые заинтересованы в своей энергетической независимости, начинают развивать или уже развивают ядерную энергетику, осваивая опыт ядерных стран по традиционным ядерным топливным циклам с возможностью выделения плутония и технологиями обогащения урана для обеспечения АЭС с легководными реакторами собственным ядер-

ным топливом. Это ведет ко вполне легальному распространению ключевых технологий получения оружейных материалов: обогащения урана и извлечения плутония.

При этом политика ограничения передачи ядерных технологий другим странам и усиление международных контрольных мер оказались недостаточно эффективными барьерами на пути ядерного распространения.

Предложенная Президентом Российской Федерации инициатива является политическим выводом из критического анализа состояния мировой ядерной энергетики в тесной связи двух ее важ-

нейших для человечества аспектов: долговременное обеспечение энергией безопасным и эколо-

гически приемлемым способом и предотвращение ее использования для целей создания ядер-

ного оружия. Предлагаемый подход способен постепенно заменить существующую сегодня ядерную энергетику с ее проблемами нераспространения, ресурсными и экологическими ограничениями. Он также будет содействовать завершению начатого Россией и США ядерного разоружения запрещением и полной ликвидацией ядерного оружия.

При этом предложенное постепенное исключение из использования в мирной ядерной энергетике обогащенного урана не означает ничего другого, кроме намерения разрабатывать новое поколение реакторов на быстрых нейтронах, которые возьмут на себя в будущем основную роль в развитии крупномасштабной ядерной энергетики, а в отдаленном будущем, при исчерпании дешевого урана, позволит перевести реакторы на тепловых нейтронах на торий-урановый цикл. В то же время следует учитывать, что этот процесс потребует несколько десятилетий, в течение которых ядерная энергетика может еще развиваться на легководных реакторах, использующих низкообогащенный уран.

Предложение отказаться от чистого плутония говорит о намерении разработать быстрый реактор с ядерным топливом равновесного состава без выделения чистого плутония при переработке облученного топлива. Это не может касаться ни утилизации в ядерной энергетике оружейного плутония, ни переработки в будущем на заводах ядерных стран или технологических центров под международной юрисдикцией облученного топлива легководных реакторов с выделением плутония и изготовлением из него части топлива реакторов на быстрых нейтронах.

Выступлением Президента Российской Федерации В.В. Путина на Саммите тысячелетия и распространенным там же документом мировое сообщество приглашается к широкому международному сотрудничеству по совместной разработке инновационной реакторной технологии и ядерного топливного цикла естественной безопасности, основными чертами которых являются:

неограниченная обеспеченность топливными ресурсами за счет эффективного ис-

пользования природного урана, а в дальнейшем и тория;

исключение тяжелых аварий с радиационными выбросами, требующими эвакуации населения, при любых отказах оборудования, ошибках персонала и внешних воздействиях за счет, главным образом, присущих ядерным реакторам и их компонентам природных качеств и закономерностей (естественная безопасность);

экологически безопасное производство энергии и утилизация отходов за счет замыкания топливного цикла со сжиганием в реакторе долгоживущих актиноидов и продуктов деления и радиационно-эквивалентным захоронением радиоактивных отходов без нарушения природного радиационного баланса;

закрытие канала распространения ядерного оружия, связанного с ядерной энергетикой,

путем постепенного исключения в ней технологий извлечения плутония из отрабо-

тавшего топлива и обогащения урана и обеспечения физической защиты ядерного топлива от краж;

экономическая конкурентоспособность за счет низкой стоимости и воспроизводства топлива, высокой эффективности термодинамического цикла, решения проблем безопасности АЭС без усложнения их конструкций и предъявления экстремальных требований к оборудованию и к персоналу. Все эти требования можно выполнить, не слишком отклоняясь от существующей технологии, разработанной в рамках военных и гражданских программ, при условии последовательной реализации в реакторах и техноло-

гии принципов естественной безопасности.

Проведенные в России исследования показали реальность такого подхода. Однако решать задачи его реализации отдельно взятому государству чрезвычайно сложно.

Соседние файлы в предмете Атомная энергетика