Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Высшая математика-2.doc
Скачиваний:
213
Добавлен:
04.03.2016
Размер:
4.82 Mб
Скачать

Замена переменных

Для упрощения подынтегральной функции и, тем самым, для нахождения интеграла часто применяется так называемая подстановка или замена переменных.

Если обозначить и сделать соответствующие преобразования в заданном подынтегральном выражении, полученный интеграл при удачном выборе функцииможет оказаться более простым или даже табличным.

Для некоторых типов подынтегральных функций известны такие подстановки, которые приводят к цели. Ниже будут рассматриваться многие из них.

Например:

  1. . Если применить замену ;, то получим:

.

  1. . Применим замену ;. В результате получим:

.

  1. Как и в предыдущем случае, применим замену ;. В результате получим:

.

  1. . Интегрирование этого выражения будет проведено позднее при подробном рассмотрении метода замены переменных.

Наряду с заменой переменных часто применяется метод разложения, который опирается на линейные свойства интегралов. Это можно проиллюстрировать следующим примером:

Интегрирование по частям

Если функции идифференцируемы на множествеи, кроме того, на этом множестве существует интеграл, то на нем существует и интеграл, причем.

Действительно, если проинтегрировать формулу нахождения дифференциала произведения двух функций:

,

то можно получить следующее соотношение между первообразными от этих функций:

.

Такой способ нахождения интеграла называется интегрированием по частям. Этот способ целесообразно применять, если интеграл, стоящий в правой части проще исходного. При использовании метода интегрирования по частям задана левая часть равенства, т.е. функцияи дифференциал . Таким образом, выбор функций и неоднозначен, причем не каждый способ выбора этих функций ведет к упрощению первоначального интеграла.

Функции, интегрируемые по частям, можно схематично разделить на три группы.

1. Интегралы, подынтегральная функция которых содержит в качестве множителя одну из следующих функций: ,,,,,, при условии, что оставшаяся часть подынтегральной функции представляет собой производную известной функции.

В случае если подынтегральная функция содержит в качестве множителя одну из перечисленных выше функций в степени , то операцию интегрирования по частям придется повторятьраз.

2. Интегралы, подынтегральная функция которых содержит в качестве множителя одну из следующих функций: ,,,aтакже, полиномй степени:

.

Для вычисления интегралов второй группы нужно формулу интегрирования по частям применять раз, причем в качестве функциинужно брать многочлен соответствующей степени. После каждого интегрирования степень полинома будет понижаться на единицу.

3. Интегралы вида:

; ;.

Применение формулы интегрирования по частям может привести к ситуации, когда интеграл в правой части и интеграл в левой части равенства совпадают, т.е. получается равенство вида:

,

где исходный интеграл;

постоянная .

В этом случае применение метода интегрирования по частям позволяет получить уравнение первого порядка для , из решения которого находится исходный интеграл:

.

Причем, метод интегрирования по частям может применяться многократно и любой из сомножителей можно всякий раз принимать за .

Большое количество интегралов, не входящих в эти три группы, у которых невозможно выделить общий признак для группировки, также вычисляются методом интегрирования по частям. К таким интегралам можно отнести:

, ,,,

и многие другие.