Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций Ольги Москвич.docx
Скачиваний:
459
Добавлен:
09.06.2015
Размер:
3.67 Mб
Скачать

Вероятность микроскопического состояния. Статистический ансамбль

Нахождение вероятности микроскопического состояния согласно (2.3) предполагает очень большое число испытаний в системе, находящейся в неизменных условиях. Поскольку многократное проведение испытаний для молекулярной системы даже как мысленный эксперимент зачастую затруднено, то в молекулярной физике подобная процедура заменяется одновременной фиксацией интересующего микроскопического состояния в очень большом множестве совершенно одинаковых систем, называемых статистическим ансамблем.

Итак, статистическим ансамблем называется большая совокупность статистических систем. Метод ансамблей введен в молекулярную физику Гиббсом.

Статистический ансамбль, который необходим для наших целей, называется микроканоническим. Микроканонический ансамбль состоит из одинаковых изолированных систем с одинаковой энергией.

В статистике используются и другие ансамбли. Например, при изучении распределения Максвелла будет актуальным каноническийансамбль систем. Канонический ансамбль представляет совокупность незамкнутых систем, имеющих возможность обмениваться энергией только между собой. Их можно рассматривать как подсистемы изолированной системы, принадлежащей микроканоническому ансамблю.

Вернемся к определению вероятности микросостояния. Для простоты рассмотрим вероятность того, что определенная молекула «с номером на спине» находится в j-ой ячейке конфигурационного пространства. Представим микроканонический ансамбль, состоящий изстатистических систем. Число ячеек в каждой системе ансамбля равно. Предполагается, что. Вследствие этого можно считать, что число систем ансамбля, в которых выделенная частица находится вj-ой ячейке достаточно велико. Тогда в соответствии с (2.3) вероятность интересующего нас состояния

Определения вероятности (2.3) и (2.14) совершенно эквивалентны. При решении задач следует выбирать наиболее удобное из них для конкретных условий.

Статистические постулаты

Молекулярная статистика как научная теория опирается на два основополагающих допущения, не имеющих в настоящее время доказательств, и поэтому называемых постулатами. Несмотря на это все последующие положения, законы, следствия и выводы теории имеют строгие логические доказательства и экспериментальные подтверждения.

Постулаты имеют свои исторически сложившиеся названия. Первый кратко именуют постулатом равновероятности.Второй постулат называютэргодической гипотезой.

Прежде всего, дадим развернутые (двухчастные) формулировки этих постулатов (см. схему 2.4.1), а затем прокомментируем их содержания.

Комментарий к постулату равновероятности

Как можно экспериментально установить, что система находится в равновесии? Для этого надо убедиться в том, что все наблюдаемые макроскопические параметры системы не зависят от времени. Рассмотрим микроканонический ансамбль систем.

Для любой частицы, входящей в каждую систему ансамбля, нет никаких предпочтений для нахождения в какой либо конкретной ячейке пространства по сравнению с другой. Все ячейки физически эквивалентны, все местоположения частицы равновозможны. Вследствие этого, системы статистического ансамбля в некоторый момент времени будут равномерно распределены по всем доступным микроскопическим состояниям.

С течением времени каждая система будет совершать переходы между различными доступными состояниями. Законы механики позволяют доказать, что такой динамический процесс не может изменить равномерное распределение систем по микросостояниям.

Равномерное распределение остается, таким образом, неизменным во времени. Другими словами, вероятность нахождения системы в каждом из доступных состояний не зависит от времени.Это стационарное состояние изолированной системы по определению является равновесным. При этом среднее значение любого измеряемого макроскопического параметра системы не будет зависеть от времени.

Обратите внимание на вторую часть постулата. В ней заключено предупреждение о возможности обнаружить изолированную систему в неравновесном состоянии. Однако, благодаря своей изолированности система обречена в обозримом будущем оказаться в равновесии.

Схема 2.4.1.