Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций Ольги Москвич.docx
Скачиваний:
459
Добавлен:
09.06.2015
Размер:
3.67 Mб
Скачать

III. Физика реальных макросистем

ЛЕКЦИЯ 13

РЕАЛЬНЫЕ МАКРОСИСТЕМЫ

Изучение реальных макросистем, т.е. систем с межмолекулярным взаимодействием, начнем с рассмотрения свойств вещества в состоянии термодинамического равновесия, а затем перейдем к анализу процессов в неравновесных системах.

Как вам известно, вещества могут существовать в четырех агрегатных состояниях. Исключим пока из рассмотрения такое состояние вещества как плазма. Забудем про неё до изучения ядерной физики. В ближайшей перспективе сконцентрируем своё внимание на свойствах таких систем как реальный газ, жидкость и твердое тело, а также на их взаимных превращениях. Последние принято называть фазовыми превращениями или фазовыми переходами. Теперь самое время сформулировать определение фазы.

Фазой называется макроскопическая физически однородная часть вещества, отделенная от остальных частей системы границами раздела. Например, вода, лед и пар; вода, ртуть и смесь паров воды, ртути и воздуха; графит и алмаз. Из приведенных примеров и вашего повседневного опыта ясно, что в системе может быть несколько твердых или жидких фаз, но не более одной газообразной, поскольку газы необратимо смешиваются между собой. Прежде чем углубиться в тему фазовых переходов обратимся к моделям материальных тел, разберемся с внутренней структурой вещества в различных агрегатных состояниях. Определяющим фактором в реальных системах являются силы межмолекулярного взаимодействия.

На больших расстояниях молекулы притягиваются друг к другу, а на малых расстояниях порядка размеров самых молекул частицы отталкиваются друг от друга. По своей природе силы межмолекулярного взаимодействия являются электрическими. В зависимости от распределения электронной плотности внутри отдельных молекул и концентрации самих молекул в пространстве существуют различные типы межмолекулярного взаимодействия. Для каждого агрегатного состояния характерны свои типы взаимодействия.

Количественным критерием существования того или иного агрегатного состояния вещества может служить соотношение средней кинетической энергии молекулы и энергии межмолекулярного притяжения. Заметим, что энергия притяжения - величина отрицательная (знак « - »), а кинетическая энергия – положительная (знак «+»), поэтому сравнивать будем не значения, а модули этих энергий. Итак, если

Дадим более детальное описание каждого из этих состояний и начнем с твердого тела.

13.1. Твердые тела

В физике твердыми телами обычно называются только кристаллические тела. Аморфные тела типа воска, стекла, пластика, хотя они и могут быть твердыми (сохранять свою форму), рассматриваются как очень вязкие жидкости. Аморфные тела не имеют определенной температуры плавления. При нагревании они постепенно размягчаются, их вязкость при этом уменьшается, и они превращаются в жидкость. Аморфные тела изотропны, т.е. их свойства одинаковы по всем направлениям.

Кристаллические тела имеют определенную температуру плавления при фиксированном давлении. Свойства кристаллов неодинаковы по различным направлениям. Кристаллы анизотропны. Скорость распространения света, коэффициенты теплопроводности и упругости и многие другие свойства кристалла зависят от направления в нем. Это связано с особенностями внутреннего строения твердого тела.

Условие (13.3) свидетельствует о том, что в кристалле силы межатомного притяжения доминируют, существенно подавляя хаотическое движение атомов. Поступательное движение сведено на нет и возможны только небольшие тепловые колебания атомов около положения равновесия. Устойчивое равновесие достигается при вполне определенном расположении молекул относительно друг друга. Поскольку такое распределение составляющих кристалл элементов должно происходить по всему объему тела, то неизбежно периодическое повторение формы, т.е. возникновение кристаллической решетки с определенной симметрией. Точки равновесного положения атомов, ионов и молекул в кристалле называют узлами кристаллической решетки. Под симметрией понимается способность твердого тела совмещаться с самим собой в результате реальных или воображаемых действий над его точками.

Операциями симметрии называются действия, с помощью которых производится совмещение тела. Такими операциями являются отражение, повороты, инверсии и трансляции (параллельные переносы). В частности, если решетка совмещается сама с собой при мысленном повороте вокруг некоторой оси на угол 360º, где – число совмещений за полный оборот, то эту ось называют осью симметрииn-го порядка. В твердых телах имеют место только оси симметрии с порядками 2, 3, 4 и 6 с соответствующими углами поворота 180, 120, 90 и 60º. Симметрия 5-го порядка в кристаллах невозможна.

В основе теории твердого тела лежит модель бесконечного совершенного монокристалла. Если выбрать начало координат в некотором узле кристаллической решетки, то радиус-вектор любого другого узла можно представить в виде

где – целые числа, включая ноль. Векторыназываются базисными, а их совокупность базисом решетки. Сам векторназывается вектором трансляции. Длины векторовназываются основными периодами (параметрами) решетки. Параллелепипед с ребрами вместе с атомами в его вершинах, а возможно и внутри объёма параллелепипеда, называетсяэлементарной ячейкойтрансляцией этой ячейки создаётся бесконечнаяпространственная решетка. Если ячейка содержит восемь атомов в вершинах параллелепипеда и не одного атома внутри своего объёма, то ячейка называетсяпримитивной.Сложные ячейкиимеют узлы внутри своего объёма или на гранях параллелепипеда.

Конкретная кристаллическая решетка может быть представлена не одной решеткой Браве, а совокупностью нескольких решеток Браве. В таких случаях она называется сложной решеткой.

Выбор базиса даже примитивной решетки не является однозначным. На рис. 13.1 приведены примеры примитивных (а, б) и сложных (в, г) ячеек для одного и того же кристалла (двухмерная решётка).

Рис. 13.1.

Наименьшая из примитивных ячеек, включающая в себя все элементы симметрии решетки, называется ячейкой или параллелепипедом Браве.Существует всего семь типов решеток или семь типов кристаллических систем. Характеристики кристаллических систем и их названия приведены в табл. 13.1.

Таблица. 13.1.

Кристаллическая система

Соотношение рёбер элементарной ячейки

Соотношение между углами в элементарной ячейке

Триклинная

Моноклинная

Ромбическая

Тетрагональная

Кубическая

Ромбоэдрическая

но

Гексагональная

Ограничимся вышеизложенными представлениями о симметрии кристаллов, хотя они, безусловно, не исчерпывают затронутую тему. Последовательно и подробно эти вопросы изучаются в курсе кристаллографии.

Теперь уместно обратиться к рассмотрению межатомных взаимодействий в твердых телах. Минимизация энергии взаимодействия приводит к той или иной симметрии кристалла и определенному типу пространственной решетки. Положительная разность между энергией изолированных атомов и энергией атомов в кристаллической решетке называется энергией связи . Ее значение колеблется в интервале 0,1÷ 7,0 эВ на частицу в зависимости от характера взаимодействия. Меройявляется работа, которую необходимо совершить для удаления частицы из кристалла.

При химическом взаимодействии, приводящем к образованию кристалла, различают несколько основных типов связи, представленных на схеме 13.1.1. Более подробное изложение вопроса о типах связи можно найти в [11,14].

Кроме основных типов связей между частицами в твердом теле возможны смешанные связи. Различные сочетания взаимодействий приводят к многообразию строения кристаллов. Такое явление как анизотропия кристаллов становится очевидным благодаря рассмотренной модели материального тела. Действительно, ведь в различных плоскостях, которые можно провести в кристалле, расстояния между частицами оказываются различными. Так как силы, действующие между частицами, зависят от расстояния, то физические свойства кристаллов (оптические, электрические, механические) зависят от направления, а в этом и заключается их анизотропия. Следует также отметить, что между , температурой плавления кристаллов (при постоянном давлении) и энергией связи наблюдается прямая корреляция.

Схема 13.1.1.