Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций Ольги Москвич.docx
Скачиваний:
459
Добавлен:
09.06.2015
Размер:
3.67 Mб
Скачать

1.5. Принципы организации статистического и термодинамического методов изучения макросистем

Термодинамика возникла в первой половине XIXвека как теоретическая основа теплотехники. Ее первоначальная задача сводилась к изучению закономерностей и условий оптимизации превращения теплоты в работу в паровых машинах. В дальнейшем термодинамика вышла далеко за пределы технической задачи. Центр тяжести переместился в сторону изучения физических явлений в макросистемах. Это произошло во второй половинеXIXвека.

В это же время появились пионерские работы по молекулярному движению Максвелла. Свое развитие молекулярно-кинетическая теория получила в работах Больцмана. Концепция атомизма в XIXвеке подвергалась резкой критике и нападкам многочисленных оппонентов. Непримиримая идеологическая борьба развернулась в европейском научном сообществе. В качестве противников учения Больцмана на конгрессах и съездах выступали такие известные ученые как Й. Лошмидт, Э. Мах, В. Оствальд, Ж. Пуанкаре, М. Планк. Тем не менее, идеи статистического подхода физики макросистем были подхвачены учеными в разных частях света.

Свое дальнейшее развитие термодинамический и статистический методы получили в ХХ веке. Большой вклад в развитие молекулярной физики внесли выдающиеся российские ученые: Д.И. Менделеев, А.Г. Столетов, М.П. Авенариус, Т.А. Афанасьева-Эренфест, Н.Н. Боголюбов, П.Л. Капица, Л.Д. Ландау, М.А. Леонтович и другие. В настоящее время термодинамический и статистический методы являются универсальными методами теоретического исследования сложных систем и находят широкое применение не только в различных областях физики, но также в химии, биологии, медицине, т.е. во всем естествознании.

Статистический метод

В системах многих частиц проявляются особые закономерности, не свойственные отдельным молекулам. Их возникновение обусловлено чрезвычайной массовостью случайных и неконтролируемых факторов, действующих в макросистемах. Такие закономерности называются вероятностными или статистическими. Открытие законов нового типа, в которых все связи между физическими величинами носят вероятностный характер, является основной задачей теории.

В основе статистического метода лежит модель материального тела, или атомная гипотеза. Моделью материального тела называется большая совокупность частиц, свойства которых, законы движения и взаимодействия известны.

Модели используются как готовые «продукты», полученные из других областей науки: структурной химии, квантовой физики, квантовой химии, физики твердого тела и т.д. Молекулы (объекты микромира), как правило, подчиняются законам квантовой физики, однако, при определенных условиях они ведут себя как объекты классической механики.

Выбор модели, это всегда беспокойный процесс угадывания, требующий от исследователя обращения, как к рациональному, так и интуитивному уровням познания. Желательно, чтобы модель была не слишком сложной и в тоже время отражала существенные свойства конкретной реальной системы.

Область применимости модели задается интервалом температур, давлений или характерными размерами сосуда (трубки, отверстия) и тщательно анализируется на основе априорных теоретических представлений. Окончательная проверка адекватности модели осуществляется путем сравнения полученных на ее основе результатов с экспериментальными данными. Для статистического описания макросистем используется математический аппарат теории вероятностей и математической статистики. Ядро статистической теории содержит комплекс понятий и положений, а также два постулата. Основные законы молекулярной статистики представлены в виде распределений вероятностей состояний системы. Во многих случаях эти законы имеют универсальный характер, независимо от вида модели материального тела. Задача молекулярной статистики формулируется как трехуровневая или триединая:

1. Обоснование применимости тех или иных статистических законов для описания молекулярных форм движения.

2. Вычисление средних значений микроскопических параметров системы.

3. Установление связей между средними микроскопическими параметрами системы и ее макроскопическими характеристиками.