Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций Ольги Москвич.docx
Скачиваний:
459
Добавлен:
09.06.2015
Размер:
3.67 Mб
Скачать

2.1. Классификация моделей молекулярных систем

В основе статистического подхода к описанию молекулярных явлений, как уже отмечалось, лежит модель материального тела. Обратимся к типологии моделей молекулярных систем, отраженной на схеме 2.1.1.

Схема 2.1.1.

Анализ этой схемы приводит нас к выводу, что, приступая к исследованию свойств молекулярной системы в конкретных условиях, требуется прежде всего ответить на два вопроса.

1. Можно ли считать систему идеальной (неидеальной)?

2. Классическая или квантовая модель применима к описанию молекулярной системы в данных условиях?

Классических и квантовых моделей, хорошо зарекомендовавших себя при решении различных задач молекулярной физики, достаточно много. С самыми популярными из них начнем знакомиться прямо сейчас.

2.2. Идеальные статистические системы

Продвигаться от простого к сложному – один из важнейших принципов стратегии обучения. Поэтому мы начнем освоение статистического подхода на примере молекулярных систем находящихся при таких условиях, когда их можно считать идеальными.

Замкнутая система, содержащая большое число структурных элементов, называется статистической системой. Полная энергия идеальной статистической системы является аддитивной величиной:

где – энергия структурного элемента системы,– число структурных элементов системы. Чтобы применить (2.1) к реальной макросистеме необходимо определиться с моделью материального тела. Другими словами, необходимо выяснить каковы структурные элементы системы, какие формы движения им присущи в конкретных условиях и по каким законам классической или квантовой механики можно рассчитать их одночастичные энергии.

Если к структурным элементам системы применимы квантовые модели, то такую систему условимся называть квантовой системой. Соответственно, классической системой будем называть такую систему, в которой движения молекул подчиняются законам классической механики.

На схемах, приведенных ниже, даны краткие сведения об основных моделях идеальных систем и критерии их применимости. Модель идеального газа предназначена для описания поступательного движения частиц в конфигурационном пространстве. Для одноатомного газа характерно только такое движение. Обратите внимание, что использование классической модели идеального газа возможно при температурах значительно превышающих температуру вырождения , которая пропорциональна концентрации частиц в степени 2/3 и обратно пропорциональна массе молекулы газа.

В случае многоатомного газа необходимо учитывать и другие виды движения в зависимости от его температуры, такие как колебания атомов и вращения молекул. С этой целью в классической теории привлекаются механические модели молекул, а именно пространственные структуры материальных точек (шаров) с жесткими или упругими связями. В области применимости квантовых представлений применяются соответствующие модели осцилляторов и ротаторов с дискретными энергетическими состояниями.

Осциллятор – любая система, поведение которой обнаруживает устойчивый периодический характер.

Ротаторвращающееся твердое тело.

Широко используемой в различных областях физики магнитных явлений, включая теорию ферромагнетизма и радиоспектроскопию, является модель системы спинов. Это сугубо квантовая модель, не имеющая классического аналога.

При решении задач вы с удивлением обнаружите, что некоторые состояния таких разных систем, как классический идеальный газ и система спинов описываются одним и тем же статистическим законом. Возможно, что восприятие вами квантовых моделей, особенно в первое время, будет сопряжено с некоторыми трудностями, имеющими скорее психологический, чем научный характер. Так получается, что мы изучаем молекулярную физику сразу после классической механики.

Не надо бояться квантовых моделей. Для понимания самого основного и существенного вполне достаточно той информации, что вы найдете на схемах 2.2.2 - 2.2.5. Не надо бояться квантовых моделей ещё и потому, что самой популярной моделью в нашем курсе будет классический идеальный газ (одноатомный и многоатомный). Скоро вы убедитесь, что эта простая модель позволяет рассмотреть очень широкий круг молекулярных явлений. Только сначала надо освоить язык теории вероятностей и молекулярной статистики.