Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций Ольги Москвич.docx
Скачиваний:
459
Добавлен:
09.06.2015
Размер:
3.67 Mб
Скачать

17.4. Явления переноса в ультраразреженных газах

Состояние разреженного газа называют вакуумом.Степень разрежения характеризуют тремя параметрами:Понятие вакуума относительно, чем больше размеры области, тем при меньшем давлении он достигается. В теоретических рассмотрениях обычно используется сравнение величины с линейным размером сосуда, ограничивающего объем газа. Принято различать четыре степени вакуума. Признаки градации и соответствующие названия вакуума приведены в табл. 17.1.

Таблица. 17.1.

Для описания явлений переноса наиболее «прозрачным» является случай ультраразреженного газа. Поскольку в этих условиях столкновения между молекулами практически отсутствуют, то и «эстафетный» механизм передачи молекулярных свойств не работает. Молекулы по прямым линиям летят от одной стенки сосуда к другой и обмениваются с ними, например, энергией (это уже не теплопроводность, а теплопередача) или импульсом упорядоченного движения (трение при малых давлениях). Механизмы переноса можно легко смоделировать, используя уравнение эффузии.

Одной из особенностей высокого вакуума является невозможность возникновения в нем конвекционных потоков. Наиболее трудным для теории является случай среднего вакуума, когда .

Трение и теплопроводность ультраразреженных газов

Независимость коэффициентов внутреннего трения и теплопроводности от давления газа, обоснованная нами в 17.3. имеет место при таких давлениях, когда . В сильно разреженных газах, как отмечалось выше, механизм трения совершенно иной, нежели в плотных газах. Изменение импульсов молекул происходит только при ударах о стенку сосуда, поэтому трение становится не внутренним, а внешним. Внешнее трение зависит от числа ударов о стенку, которое пропорционально концентрации частиц, а следовательно, и давлению газа.

Аналогичное заключение можно сделать и по поводу теплопередачи. Молекула как пчела, несущая нектар, летит от горячей стенки к холодной и передает ей свою кинетическую энергию. После чего она «холодная и голодная» возвращается к горячей стенке за новой порцией энергии. Механизм выравнивания температуры именно таков. Количество перенесенной молекулами энергии пропорционально числу ударов о стенки, т.е. концентрации или давлению газа. Коэффициент теплопередачи растет пропорционально давлению.

Тепловая и изотермическая эффузия

Интересные явления наблюдаются в сосудах с газом, сообщающихся через очень тонкую пористую перегородку. Размеры пор могут быть столь малыми (), что в них соблюдаются условия вакуума уже при нормальном атмосферном давлении. Если по разные стороны перегородки имеется один и тот же газ и поддерживаются различные температуры, то наблюдается явлениетепловой эффузии.А если по разные стороны перегородки находятся разные газы при одних и тех же начальных давлениях и температурах – наблюдается явлениеизотермической эффузии. На схеме 17.4.1 наглядно представлены необходимые начальные условия для тепловой и изотермической эффузии.

Схема 17.4.1.

Число частиц в эффузионном потоке через пористую перегородку в одном направлении равно

здесь произведение всех констант обозначено . Результирующий поток складывается из двух встречных потокови

в равновесном состоянии равен нулю.

В случае тепловой эффузии, когда молекулы тождественны, равновесному состоянию согласно (17.15) соответствует равенство

или

Очевидно, что в той половинке сосуда, где температура больше установится и более высокое давление. Это произойдет за счет увеличения концентрации частиц в «теплом» отсеке. Особенно наглядно это проявляется, если первоначально давления в разных отсеках были равны . Газ начнет перетекать в направлении повышения температуры: от более низкой к более высокой температуре. Явление тепловой эффузии называют такжеэффектом Кнудсена.Перефразируя известную поговорку, можно сказать: «Рыба ищет, где глубже, а молекула – где теплее».

В случае изотермической эффузии в начальный момент времени потоки ине равны:

Если .Это значит, что более легкий газ будет быстрее проходить через пористую перегородку, чем более тяжелый. Образно говоря, стройные молекулы обгоняют молекулы толстушки. Припроисходит одновременное выравнивание давления по обе стороны перегородки и концентрации молекул с разными массами. Зависимостьот времени по разные стороны перегородки показана на рис.17.4:

Рассмотренные виды эффузии имеют практическое значение. Изотермическая эффузия лежит в основе одного из методов разделения изотопов. Тепловая эффузия играет важную роль в явлениях природы, обеспечивая обмен воздуха в почве, необходимый для нормальной жизни растений. Дадим пояснения этому практически значимому феномену.

Рис. 17.4.

Летом в дневное время суток поверхность земли нагревается солнечным излучением. Поэтому воздух из более глубоких и менее нагретых слоев почвы выходит по капиллярам природного происхождения наверх и разносится ветром. Ночью верхний слой земли охлаждается и возникает обратный поток воздуха с поверхности в более глубокие слои почвы. Таким образом, осуществляется суточная циркуляция воздуха в плодородных слоях земли.

В заключение темы отметим, что рассмотренные нами процессы переноса в газах не исчерпывают всех явлений такого рода. Например, в плотных газах мы обошли вниманием взаимную диффузию различных газов, а также термодиффузию. Остались в запасниках и некоторые явления в ультраразреженных газах, например, такие как течение Кнудсена, тепловое скольжение, радиометрический эффект. Вот уж воистину, чем больше узнаешь, тем больше граница с непознанным…

Контрольные вопросы

1. Назовите параметры, определяющие интенсивность столкновений молекул друг с другом.

2. Как определяется вероятность столкновения молекулы с другими частицами?

3. Что характеризует эффективное сечение молекулы?

4. Какого рода столкновения молекул определяют явления переноса?

5. Как определяется в модели твердых тел?

6. Как определяется в теории Сёзерленда?

7. Дайте определение средней длины свободного пробега молекул.

8. Назовите исходные положения, необходимые для вывода обобщенного уравнения переноса. Запишите это уравнение.

9. На основе обобщенного уравнения переноса получите выражение для а) теплопроводности; б) вязкости; в) коэффициента диффузии.

10. Раскройте физическую (микроскопическую) сущность явлений переноса.

11. Какие существуют градации состояний разреженного газа?

12. Назовите явления переноса в ультраразреженном газе, которые были рассмотрены на этой лекции? Какие эффекты и количественные соотношения для них характерны?

ЛЕКЦИЯ 18

АТМОСФЕРЫ ПЛАНЕТ