Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций Ольги Москвич.docx
Скачиваний:
459
Добавлен:
09.06.2015
Размер:
3.67 Mб
Скачать

7.6. Классическая теория теплоёмкости твёрдых тел.

Закон Дюлонга – Пти

Теория теплоёмкости кристаллов основана на модели идеального твёрдого тела. В этой модели твёрдое тело (кристалл) рассматривают, как систему независимых друг от друга атомов, которые совершают гармонические колебания около положений равновесия, других движений нет.

Каждый атом имеет три колебательные степени свободы. На одну степень свободы приходится в среднем энергия kT: kT/2в виде кинетической,kT/2 – в виде потенциальной энергии.

Согласно (7.4) для одного моля одинаковых атомов

В твёрдых телах уравнение Майера (7.10) не выполняется. Пренебрегая тепловым расширением кристаллов можно записать:

.

Используя (7.11) получим выражение, называемое законом Дюлонга-Пти:

Молярная теплоёмкость всех химически простых твёрдых тел одинакова и равна .

Этот закон хорошо выполняется только при сравнительно высоких температурах. Опыт показывает, что при теплоёмкость кристалла убывает стремясь к нулю по закону(см. рис. 7.3), что не находит объяснения в классической теории.

Если кристалл представляет соединение разных атомов, то число колебательных степеней свободы следует умножить на число атомов согласно его химической формуле. Например, для кристалла число атомов равно 4, следовательно,

Рис. 7.3.

7.7. Применение квантовых моделей в теории теплоёмкости твёрдых тел

В рамках классической теории оказалось невозможным объяснить зависимость теплоёмкости твёрдых тел от температуры. Для решения этого вопроса А.Эйнштейн (1907г.) предложил использовать простейшую квантовую модель твёрдого тела.

Модель Эйнштейна

• Моделью является кристалл, состоящий из атомов, каждый из которых является квантовым гармоническим осциллятором. Колебания атомов происходятнезависимо друг от друга с одинаковой частотой . Энергия квантового гармонического осциллятора дискретна:

• Среднее значение находится с помощью распределения Гиббса.

• Для молярной теплоёмкости кристаллической решётки получим выражение, называемое формулой Эйнштейна

При высоких температурах формула Эйнштейна переходит в выражение (7.15). При низких температурах () она приобретает вид

если , то и. В целом, формула Эйнштейна передаёт характер зависимости теплоёмкости от температуры, согласующейся с результатами опыта (Рис. 7.3). Вместе с тем согласие теории с экспериментальными данными наблюдается только в качественном отношении. В частности, стремление теплоёмкости к нулю при низких температурах, следуя (7.19) идёт по экспоненте, а опыт как уже упоминалось, даёт. Расхождения связаны не с существом квантовой теории, а с избыточной упрощённостью модели твёрдого тела. Сам Эйнштейн это осознавал и представлял в каком направлении должно идти развитие модели материального тела.

В твёрдом теле нельзя рассматривать атомы как независимые, необходимо принять во внимание их взаимодействия. Это было осуществлено в модели П. Дебая (1912г.).

Модель Дебая

Кристаллическая решётка в этой модели рассматривается как связанная система взаимодействующих атомов. Колебания такой системы – результат наложения множества гармонических колебаний с различными частотами. Задача, таким образом, сводится к нахождению спектра частот твердого тела. В общем случае это сделать очень трудно. Если же рассматривать область низких температур, то в этом диапазоне основной вклад в теплоемкость вносит низкочастотный спектр колебаний решетки, который может быть рассчитан достаточно точно.

Теория Дебая дает хорошее согласие зависимости для химически простых тел с экспериментом при низких температурах, демонстрируя тем самым эвристическую силу квантового подхода.

Мы ограничились кратким изложением теории Эйнштейна и общей характеристикой теории Дебая. Подробно эти вопросы изучаются в курсе физики твёрдого тела.

Завершая обсуждение основ статистического подхода в молекулярной физике, отметим, что в дальнейшем будем неоднократно обращаться к изученному материалу при рассмотрении разнообразных явлений в макросистемах.

Контрольные вопросы

1. Сформулируйте теорему о равнораспределении энергии. Какой факт лежит в основе её доказательства?

2. Как подсчитывается число статистических степеней свободы для многоатомных газов? С какой целью это делается?

3. Что называется броуновским движением? Какова его сущность?

4. В каких областях применяется теория броуновского движения? Кто ее создатель?

5. Каким параметром характеризуется поступательное броуновское движение? Запишите и проанализируйте формулу для него.

6. Каким параметром характеризуется вращательное броуновское движение? Запишите и проанализируйте формулу для него.

7. Сформулируйте броуновский критерий точности физических измерений. Для каких приборов он актуален?

8. Какими способами можно уменьшить погрешность измерений?

9. Как определяются молярные теплоемкости имногоатомных газов в классической теории? Какова область применимости этой теории?

10. Как определяется молярная теплоемкость кристаллов в классической теории? Какова область применимости этой теории? Сформулируйте закон Дюлонга-Пти.

11. На основе каких предположений Эйнштейн получил формулу для теплоемкости твердого тела? Насколько хорошо теоретическая зависимость согласуется с экспериментальными данными?

12. В чем отличие моделей твердого тела Эйнштейна и Дебая в квантовой теории теплоемкости?