Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций Ольги Москвич.docx
Скачиваний:
459
Добавлен:
09.06.2015
Размер:
3.67 Mб
Скачать

Предисловие

Молекулярная физика преподается студентам физических специальностей как курс современной физики, демонстрирующий возможности двух универсальных методов исследования окружающего мира: термодинамического и статистического. В настоящее время эти методы находят широкое применение не только в различных областях физики, но также в химии, биологии, медицине и даже в сфере гуманитарных знаний.

Несмотря на то, что центр тяжести в преподавании дисциплины смещен в сторону изучения методов описания макросистем, вопросы, касающиеся особенностей молекулярных форм движения, также рассматриваются и раскрываются достаточно полно. Обсуждение многочисленных результатов экспериментальных исследований молекулярных систем занимает заметный объем курса в соответствии со сложившимися традициями преподавания общей физики и способствует не только высокому уровню освоения знаний, но и развитию умений применения законов физики для решения конкретных теоретических и практических задач.

Среди различных форм обучения в университете, лекция по-прежнему продолжает оставаться «горячей точкой опоры». Ее главная цель – формирование прочной базы для последующего усвоения студентами учебного материала в процессе самостоятельной работы и аудиторных практических занятий.

В основе книги лежит курс лекций по молекулярной физике, который в течение многих лет читался автором для студентов физических специальностей Красноярского государственного университета, а затем Сибирского федерального университета. Данная версия теоретического курса соответствует современным представлениям модульного обучения и состоит из трех частей (модулей). Каждая часть представляет собой автономную, но в то же время взаимосвязанную с другими модульную программу.

Содержание каждого модуля отражено в названиях:

1. Основы молекулярной статистики.

2. Основы термодинамики.

3. Физика реальных макросистем.

Последовательность изучения модулей согласно их нумерации является предпочтительной, хотя первые два модуля можно менять местами. При таком подходе требуется ввести небольшой поправочный элемент в модуль 2. Разумеется, что лекция «Предмет молекулярной физики и её методы» в любом варианте остается первой, являясь по своей сути введением в дисциплину.

По окончании самостоятельной работы с учебным материалом каждой лекции предусматривается проведение выходного контроля приобретенных знаний и умений студентом в предметной области лекции.

I. Основы молекулярной статистики

ЛЕКЦИЯ 1

ПРЕДМЕТ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ЕЕ МЕТОДЫ

1.1. Предмет молекулярной физики

Весь окружающий нас мир заполнен материальными телами, в том числе и нашими собственными, состоящими из огромного числа молекул. Это макросистемы или молекулярные системы. Предмет молекулярной физики – МОЛЕКУЛЯРНЫЕ ФОРМЫ ДВИЖЕНИЯ, т.е. движения больших совокупностей молекул. Когда мы говорим «большие» совокупности молекул, то имеем в виду не ,частиц, а,и более…!

Например, в каждом кубическом сантиметре пространства аудитории содержится молекул воздуха. Молекула в широком смысле – это структурный элемент материальной системы. Молекула в узком смысле – это наименьшая частица вещества, обладающая всеми его химическими свойствами.

В рамках нашей дисциплины в качестве молекул, как правило, будем рассматривать объекты микромира:

• Элементарные частицы (электроны, фотоны);

• Ядра атомов и нуклоны;

• Атомы и ионы;

• Молекулы (в узком смысле);

• Квазичастицы (фононы).

Термин «движение» в молекулярной физике трактуется не только как механическое движение, но и как изменение (сохранение) состояния макросистемы, её развитие и превращение. Последовательность изменений называется процессом. Например, при нагревании тел могут происходить самые разнообразные изменения их состояний: возрастание температуры и давления газа, заключенного в сосуд или кипение и испарение жидкости или изменение кристаллической структуры твердых сред.

Атомно-молекулярная структура макроскопических тел, это надежно обоснованный экспериментальный факт. К прямым методам наблюдения молекул относятся методы современной микроскопии и рентгеноструктурный анализ. Последним достижением в микроскопии является создание в 80-е годы прошлого века туннельного микроскопа. Использование сканирующего туннельного микроскопа позволяет получать информацию о распределении электронной плотности на поверхности образца и с помощью компьютера воспроизводить изображение внутренней структуры исследуемого вещества. Кроме прямых экспериментов, позволяющих наблюдать молекулы, существует множество косвенных, анализ которых дает информацию о размерах молекул, параметрах их движения и характере межмолекулярных взаимодействий. Например, широкое применение находят данные спектроскопии в оптическом и радиоволновом диапазонах.