Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций Ольги Москвич.docx
Скачиваний:
459
Добавлен:
09.06.2015
Размер:
3.67 Mб
Скачать

Анализ применения уравнения Ван-дер-Ваальса для описания свойств реальных газов

Удивительно, что при всей простоте уравнения Ван-дер-Ваальса, оно дает ясное, качественно правильное описание превращений в системе жидкость-газ. Однако в количественном отношении предсказания на его основе отклоняются от экспериментальных результатов:

• Исходное положение о том, что параметры aиbявляются константами для каждого вещества, не оправдалось. Установлено, что они зависят от температуры.

• Полученное значение критического параметра меньше чем экспериментальное значение для различных веществ. Уравнение Ван-дер-Ваальса лучше описывает легкие газы, чем тяжелые.

• Соотношение не выполняется. Более точным соотношением является соотношение.

• В области сильно сжатых газов и жидкостей, включая область двухфазных состояний, уравнение Ван-дер-Ваальса не имеет теоретического обоснования и приводит к значительным количественным расхождениям с опытом.

14.3. Внутренняя энергия газа Ван-дер-Ваальса

Внутренняя энергия газа может быть представлена суммой кинетической энергии молекул, зависящей от температуры, и потенциальной энергии взаимного притяжения частиц. Если предположить, что теплоемкость не зависит от температуры, то первое слагаемой будет равно.

Мерой потенциальной энергии притяжения является работа (с противоположным знаком), которую надо затратить для того, чтобы развести молекулы на бесконечно большое расстояние друг от друга. Молярную работу против сил внутреннего давления газа рассчитаем как макроскопическую работу

соответственно

Таким образом, внутренняя энергия одного моля газа Ван-дер-Ваальса определяется формулой

где и– молярные величины.

Выражение для энергии (14.11) можно получить и чисто термодинамическим методом согласно (12.25) на основе термического уравнения состояния газа (14.1). Для молей газа калорическое уравнение состояния имеет следующий вид

Отметим, что полученные выражения для энергии газа Ван-дер-Ваальса справедливы только для физически однородного вещества. Для двухфазных состояний они не применимы. Хотя иногда используются для количественных оценок некоторых параметров.

Анализ формул (14.11) и (14.12) показывает, что при расширении газа в вакуум в условиях адиабатической изоляции, он охлаждается. Подобное явление не может произойти в идеальном газе.

В реальном газе это происходит потому, что хотя газ и не совершает работу против внешних сил. Он совершает работу против внутренних сил молекулярного притяжения за счет уменьшения средней кинетической энергии частиц. Вследствие этого температура газа понижается.

14.4. Эффект Джоуля-Томсона Основные определения

Многолетние совместные исследования Джоуля и В.Томсона (с 1852 по 1862 гг.) позволили им не только экспериментально подтвердить зависимость внутренней энергии реального газа от его объема. Было открыто важное физическое явление, получившее название эффекта Джоуля-Томсона.

Явление заключается в изменении температуры реального газа при его медленном протекании через пористую перегородку (пробку) в условиях адиабатической изоляции. Стационарное течение газа через пробку называется процессом Джоуля-Томсона, а изменение температуры газа при таком течении дифференциальным эффектом Джоуля-Томсона. Наряду с дифференциальным эффектом существует также интегральный эффект Джоуля-Томсона. Интегральный эффект наблюдается в процессе дросселирования газа, т.е. протекания его через вентиль (малое отверстие), по разные стороны которого давление отличается на несколько порядков, т.е. в сотни или тысячи раз.

Если газ при расширении охлаждается , то эффект Джоуля-Томсона называетсяположительным, а если газ при расширении нагревается, то эффект называетсяотрицательным. Определения положительного и отрицательного эффектов относятся, как к дифференциальному, так и к интегральному эффекту Джоуля-Томсона.