Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций Ольги Москвич.docx
Скачиваний:
459
Добавлен:
09.06.2015
Размер:
3.67 Mб
Скачать

Часть вторая

При реальных (неравновесных) процессах энтропия замкнутой системы возрастает.

Информационное содержание постулата

• Энтропия есть функция состояния системы.

• Энтропия - величина аддитивная: энтропия макросистемы равна сумме энтропий её отдельных частей.

• Рост энтропии в изолированной системе означает нарастание хаоса и приближение системы к состоянию термодинамического равновесия. В этом состоянии S– максимальна, аdS=0.

• В неизолированной системе энтропия может и возрастать, и убывать, и оставаться неизменной.

Заметим, что вторая часть приведенной выше формулировки постулата имеет строгое обоснование.

11.2. Закон возрастания энтропии в изолированных системах

Для того, чтобы получить заключение об изменении энтропии в процессах изолированной системы, необходимо провести определенную цепочку логических рассуждений.

Пусть замкнутая система, т.е. система теплоизолированная, переходит в некотором процессе из равновесного состояния 1 в равновесное состояние 2 (рис. 11.3). Возвратим систему с помощью обратимого процесса в состояние 1. При этом, конечно, необходимо ликвидировать изолированность системы.

В результате возвращения системы в состояние 1 образовался цикл, к которому можно применить неравенство Клаузиуса

Рис. 11.3.

Учитывая особенности процессов, отметим, что первый интеграл обращается в нуль, поскольку система на этом участке цикла изолирована, значит. Второй интеграл можно в соответствии с определением энтропии для обратимых процессов записать в виде

или

Следовательно

В контексте рассмотренной задачи неравенство (11.4) имеет единственный смысл: в процессах замкнутой системы энтропия не убывает. Полученный результат называют законом возрастания энтропии в изолированных системах. Знак равенства в (11.4) соответствует идеальным (равновесным) процессам, а знак неравенства – неравновесным процессам.

В качестве запоминающегося примера применения закона возрастания энтропии в процессах изолированной системы рассмотрим парадокс под названием «Демон Максвелла», сформулированный еще в 1879 году.

Демон Максвелла

Имеется изолированная система, представляющая собой некоторый сосуд, разделенный перегородкой на две половины, в одной из них находится газ, другая половина пустая.

«Демон» - живое разумное существо или техническое устройство, способное в изолированной системе пропускать через отверстие в перегородке «горячие» молекулы и не пропускать «холодные», т.е. открывать дверцу для одних и закрывать её для других (рис. 11.4).

Рис. 11.4.

Если кинетическая энергия молекулы, подлетающей к дверце, отвечает условию , то ее будем считать горячей, если нет – то холодной.– это наперед заданное значение энергии. В результате «работы» демона в одной половине сосуда ранее пустой соберутся горячие молекулы, а в другой – первоначально заполненной горячими и холодными молекулами, останутся только холодные молекулы.

Формулировка парадокса

Если существование демона возможно, то в изолированной системе возникает порядок, т. е. её энтропия уменьшается. Это противоречит второму началу термодинамики.