Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций Ольги Москвич.docx
Скачиваний:
459
Добавлен:
09.06.2015
Размер:
3.67 Mб
Скачать

Флуктуационная гипотеза Больцмана

Больцман рассматривал второе начало термодинамики как статистический закон. Отступления от равновесия – флуктуации, не только возможны, но и неизбежны. По Больцману неравновесное состояние Вселенной, в котором она находится сейчас, есть гигантская флуктуация. Эта флуктуация должна исчезнуть, тогда и наступит тепловая смерть Вселенной. Спустя некоторое время опять флуктуация – спонтанное рождение Вселенной. Затем опять смерть и так без конца. Времена между двумя последовательными флуктуациями невообразимо велики по сравнению со временем существования каждой из них. Поэтому Вселенная должна находиться в состоянии тепловой смерти почти всегда.

Несостоятельность концепции тепловой смерти Вселенной

Из-за тяготения однородное изотермическое распределение вещества во Вселенной не соответствует максимуму энтропии, поскольку такое состояние не является наиболее вероятным. Вселенная нестационарная. Первоначально однородное вещество распадается под действием сил тяготения, образуя звёзды, галактики, скопления галактик и т. д. Эти процессы происходят с ростом энтропии, никогда, однако, не приходя в состояние с максимумом энтропии, так как такого состояния вообще не существует.

11.5. Энтропия и её изменение в различных процессах

Расчет изменения энтропии в различных процессах макросистем зачастую является актуальной внутренней подзадачей разнообразных задач термодинамики, химии и биологии. В частности, изменение энтропии служит мерой изменения качества энергии. Важнейшим условием для тепловых машин, работающих по произвольному циклу, является условие их максимально допустимой эффективности. Это условие заключается в том, что процессы, лежащие в основе работы машин, являются равновесными (обратимыми) циклами, для которых выполняется равенство Клаузиуса

Если тепловая машина работает не по циклу Карно, но требуется достижение максимальной эффективности агрегата, надо выполнить это условие. Вы будете активно использовать это условие при решении учебных задач, а выдающийся советский физик лауреат нобелевской премии Петр Леонидович Капица добивался выполнения (11.6) при проектировании установок для сжижения гелия.

Вычислять изменение энтропии для обратимых процессов следует согласно (11.2). В подынтегральном выражении (11.2) можно представить двумя способами. Если известна теплоемкостьв рассматриваемом процессе, то

Если же о теплоемкости ничего не известно, то надо воспользоваться непосредственно первым началом термодинамики, тогда

Применение (11.8) для идеального газа в количестве 1 моль приводит к формулам, имеющим широкое практическое использование

Большинство процессов, происходящих в природе, являются необратимыми. Для таких процессов вычисление энтропии основывается на том, что – функция состояния. Если система перешла из одного состояния в другое необратимым образом, то можномысленно заменить необратимый процесс обратимым, причем начальное и конечное состояния в этих процессах должны быть равновесными. Рассчитанное в этом случае изменение энтропии будет равно изменению энтропии при реальном необратимом процессе. Отметим, что воображаемый процесс не имеет ничего общего с реальным необратимым процессом, разумеется, кроме того, что у них совпадают начальные и конечные состояния. Обычно выбирают такой обратимый процесс, по которому расчёт проще.

Приведем примеры необратимых процессов в теплоизолированных системах, которые часто встречаются в учебных задачах:

• Расширение идеального газа в вакуум (процесс Гей-Люссака).

• Диффузия (смешивание различных газов).

• Расширение газа через турбину с совершением работы.

• Процесс теплообмена двух и более тел.

Рассмотрим один из таких процессов подробнее.