Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций Ольги Москвич.docx
Скачиваний:
459
Добавлен:
09.06.2015
Размер:
3.67 Mб
Скачать

13.2. Реальные газы и жидкости

При описании свойств газов мы считали их идеальными только потому, что выполнялись одновременно два условия:

• Среднее расстояние между молекулами в десятки тысяч раз больше чем их собственный размер:.

• Потенциальная энергия взаимодействия частиц пренебрежимо мала по сравнению с их кинетической энергией.

Если эти условия не выполняются, например, при высоких давлениях и низких температурах, то отклонение от идеальности может быть установлено экспериментально, путем проверки справедливости уравнения Клапейрона-Менделеева для некоторого газа при различных давлениях. Измерения позволяют установить область, где отклонения от этого закона становятся значительными.

Чувствительным индикатором неидеальности газов является термодинамический коэффициент сжатия. Для идеального газа согласно его определению.

Экспериментальные измерения этого свойства показывают, что при высоких давлениях

существенны силы отталкивания, а при низких давлениях

- существенны силы притяжения.

У жидкостей сжимаемость в тысячи раз меньше, чем у газов, поскольку молекулы упакованы очень плотно. Требуются достаточно большое давление, чтобы совсем незначительно уменьшить объем жидкости. Числовое значение для большинства жидкостей порядка 10-10÷ 10-12.

Потенциал межмолекулярного взаимодействия

Для описания взаимодействий молекул в жидкостях и газах широко используется потенциал Леннарда-Джонса

где и– константы, индивидуальные для каждого вещества. Первое слагаемое в (13.6) соответствует энергии короткодействующего отталкивания, а второе слагаемое дает энергию дальнодействующего притяжения между двумя молекулами в зависимости от расстояниямежду ними.

Характер изменения показан на рис. 13.2.

Рис. 13.2.

Природа межмолекулярного взаимодействия

Теперь в общих чертах обсудим природу притяжения и отталкивания молекул в жидкостях и газах. Силы притяжения, действующие на больших расстояниях между молекулами, называются силами Ван-дер-Ваальса. Эти силы возникают благодаря наличию у молекулы постоянных или индуцированных электрических дипольных моментов. Полярные молекулы, обращенные друг к другу разноименными зарядами, притягиваются друг к другу. При таком взаимодействии отсутствует какой либо обмен зарядами в отличие от ковалентной и ионной связи. Кстати, в молекулярных кристаллах также действуют только силы Ван-дер-Ваальса.

Короткодействующие силы отталкивания в веществе возникают вследствие перекрывания электронных оболочек молекул. Одноименные заряды отталкиваются. Чтобы рассчитать энергию их взаимодействия необходимо знать распределение электронной плотности в пространстве. Такую информацию можно получить только в рамках квантово-механического подхода. Мы не имеем возможности углубляться в понимание этого вопроса. Однако, следует обратить внимание на то, что механизм соударения молекул реальных газов не включает в себя прямого упругого удара как это предполагается в модели идеального газа.

Структура жидкостей

Молекулы в жидкостях находятся значительно ближе друг к другу, чем в газах. Силы Ван-дер-Ваальса действуют в них во всем интервале давлений и температур области существования жидкого состояния. В расположении частиц жидкости наблюдается ближний порядок. Это означает, что по отношению к любой частице расположение ближайших частиц является упорядоченным. На фоне хаотического перемещения молекул относительно друг друга в жидкостях могут образовываться и существовать в течение продолжительных промежутков времени агрегаты молекул. Эти структурные образования по своим свойствам близки твердому телу. Сочетание у жидкостей свойств газа и твердого тела делает их теоретическое описание весьма затруднительным. В жидкостях с удлиненными молекулами (особенно в органических) наблюдается одинаковая ориентация их в пределах значительного объема, что приводит к появлению анизотропии ряда свойств. Возникает некоторое промежуточное состояние между жидкостью и твёрдым телом, которое называется жидким кристаллом.

Жидкие кристаллы обладают очень важными оптическими свойствами, что обеспечило их многочисленные применения и большой интерес к их изучению. На свойства жидких кристаллов сильное влияние оказывают электрические и магнитные поля, что открывает возможности управления световыми потоками с помощью этих кристаллов. Широко известны цифровые указатели на жидких кристаллах, а также дисплеи. Большим преимуществом жидкокристаллических пленок являются их относительная дешевизна и малые величины используемых электрических мощностей и напряжений.

Несмотря на отсутствие теории жидкостей, некоторые их свойства изучены достаточно полно, например, поверхностное натяжение и связанные с ним явления. Предлагаемый курс лекций не содержит данную тему, хотя она заявлена в программе дисциплины. Её самостоятельное изучение вами предусматривается в физическом практикуме по молекулярной физике, содержащем две лабораторные работы по данной теме. В описании этих работ достаточно подробно излагается теория поверхностных явлений, там же даны ссылки на учебную литературу.

Теперь мы обратимся к изучению процесса перехода из газообразного состояния в жидкое, что, безусловно, может расширить наши представления об этих состояниях вещества.