Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
современная генетика т2.doc
Скачиваний:
190
Добавлен:
21.02.2016
Размер:
9.54 Mб
Скачать

Айала ф., Кайгер Дж. Современная генетика: в 3-х т. Т. 2. Пер. С англ.: – м.: Мир, 1988. – 368 с.

12. Генетический код 93

Рис. 12.9. Структура

тРНКTrp из opal-су-

прессорного штамма Е. соli. Она отличается от структуры аналогичной тРНК из бессупрессорного штамма тем, что в положении 24 остаток G заменен на А. (Основания, помеченные звездочкой, подвергаются посттранскрипционной модификации.) (По Hirsh D. 1971. J. Mol. Biol., 58, 439.)

триптофана, возникает в результате мутации в дигидроурациловой петле тРНКТгр, которая по-прежнему сохраняет нормальный антикодон ССА, в норме узнающий триптофановый код он UGG (рис. 12.9). Таким образом, правильное узнавание при трансляции кода зависит не только от комплементарности антикодонового участка, но и от структуры других участков молекулы тРНК.

Известны и внегенные супрессоры missense-мутаций, которые также возникают в результате мутаций, влияющих на способность молекул определенных тРНК узнавать соответствующие кодоны. Например, одна из мутаций (trpA36) в гене триптофансинтазы E. coli приводит к замене глицина в положении 211 на остаток аргинина (рис. 11.6). При этом глициновый кодон GGA превращается в аргининовый кодон AGA. Супрессорная мутация suA36 затрагивает ген, кодирующий тРНКG, которая в норме имеет антикодон UCC. Мутантная su A36-тРНКGlу содержит антикодон UCU, в результате чего мутантный trp А36-кодон AGA может считываться уже не как аргининовый, а как глициновый.

Возникает вопрос: как же может выжить клетка, несущая ген супрессорной тРНК, если при этом так изменяются свойства необходимой для нормального функционирования исходной тРНК, что правильное узнавание некоторых кодонов или правильная терминация белкового синтеза оказываются невозможными? Ответ на этот вопрос, вероятно, должен иметь двойственную природу. Во-первых, в случае мутации типа su 3 + соответствующий штамм не лишается нормальной тРНКТуг. Эта мутация происходит в клетках, содержащих дуплицированный ген тРНКТуг, и, таким образом, образующийся супрессорный штамм содержит как нормальную, так и мутантную тРНКТуг. Во-вторых, скорость роста у супрессорных, и в особенности nonsense-супрессорных, штаммов существенно меньше, чем у соответствующих бессупрессорных прототипов. По-видимому, самим фактом своего выживания эти штаммы обязаны тому, что мутантные тРНК в действительности являются не очень

Айала ф., Кайгер Дж. Современная генетика: в 3-х т. Т. 2. Пер. С англ.: – м.: Мир, 1988. – 368 с.

94 Экспрессия генетического материала

эффективными супрессорами. Оценки эффективности супрессии nonsense-мутаций различными amber-супрессорами приведены в табл. 12.8. Эти супрессоры не слишком эффективно подавляют терминацию и все же позволяют клетке наработать достаточное количество активного белка (вероятно, всего лишь около 5% от нормы) для поддержания роста. Характерно, что и в отсутствие супрессии nonsense-мутации оказываются в той или иной степени подверженными «пробою», т. е. преждевременная терминация происходит не со 100%-ной эффективностью. Известно, что различные nonsense-мутации характеризуются различиями в вероятности «пробоя», которая, по-видимому, определяется особенностями окружения в данной последовательности мРНК.

Процесс терминации на истинных терминаторных кодонах происходит также не со 100%-ной эффективностью. Некоторые мРНК в действительности содержат два тандемных терминаторных кодона (часто это кодоны различного типа) на конце кодирующей последовательности. Возникновение таких тандемных терминаторных сигналов в эволюционном отношении, вероятно, обусловлено необходимостью более надежно обеспечивать терминацию трансляции. В тех случаях, когда терминации трансляции на соответствующих кодонах не происходит, в результате «сквозной» трансляции кодонов, следующих за терминаторным сигналом, образуются белки с избыточной С-концевой последовательностью (readthrough proteins). Возможно, «сквозная» трансляция происходит при участии некоторой супрессорной активности, характерной для нормальных клеток, хотя генетическая природа этой активности окончательно еще не установлена. Образование белков с избыточной последовательностью играет определенную роль при обычной инфекции фагами λ и Qß. В ретикулоцитах кролика была зарегистрирована сквозная трансляция ß-глобиновой мРНК, функциональное значение которой пока неизвестно. Обнаружено, что проявляющаяся в ретикулоцитах UGA-супрессорная активность обусловлена наличием особого вида тРНКТгр, способной подставлять триптофан в положение, соответствующее этому терминаторному кодону, и тем самым приводить к сквозной трансляции. Удавалось наблюдать сквозную трансляцию, проходящую через терминаторные кодоны UAG и UGA, но не через кодон UAA. Судя по всему, кодон UAA служит наиболее эффективным сигналом, используемым для терминации трансляции. Не исключено, что наблюдаемая в норме сквозная трансляция является проявлением еще одного, пока еще слабо изученного механизма, позволяющего дополнительно расширить возможности использования содержащейся в геноме информации.

В процессе обеспечения точности полипептидного синтеза принимают участие и рибосомы. Так, антибиотическое действие стрептомицина реализуется за счет связывания с одним из рибосомных белков и остановки синтеза белковой цепи. При низкой концентрации стрептомицина в среде клетки E. coli StrS, несущие nonsense-мутации, приобретают способность к супрессии всех трех видов nonsense-кодонов. Мутации, в той или иной степени изменяющие структуру рибосом, оказывают влияние на точность трансляции. Так, StrR-мутанты E. coli обладают измененным 308-рибосомным белком, благодаря которому заметно повышается эффективность преждевременной терминации трансляции на возникших в результате мутаций nonsense-кодонах. Другая мутация, ram (ribosomal ambiquity mutation), действует на тот же 30S-