Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
современная генетика т3.doc
Скачиваний:
271
Добавлен:
21.02.2016
Размер:
8.04 Mб
Скачать

Айала ф., Кайгер Дж. Современная генетика: в 3-х т. Т. 3. Пер. С англ.: – м.: Мир, 1988. – 336 с.

23. Элементарные процессы эволюции 125

Рис. 23.5. Численность популяции и генетический дрейф. На графиках представлены результаты проведенных с помощью ЭВМ численных экспериментов, моделирующих роль случайных явлений в изменении частоты аллелей для популяций разной численности. Начальные частоты ал-

лелей во всех трех популяциях были одинаковы и равны 0,50. Символом N обозначены эффективные численности популяций. (По W.F. Bodmer, L. L Cavalli-Sforza, Genetics, Evolution and Man, W. H. Freeman, San Francisco, 1976.)

нию или снижению частоты аллеля всегда может смениться на обратную, пока частота аллеля не достигнет нуля или единицы (рис. 23.5). Если частота аллеля в одном поколении увеличилась, в следующем поколении она с равной вероятностью может либо еще больше возрасти, либо уменьшиться. Если же аллель утрачивается или «фиксируется» (т. е. если значение его частоты достигает 0 или 1), процесс прекращается. Частота аллеля уже не может более изменяться до тех пор, пока в результате мутации не появится новый аллель.

Рассмотрим следующий пример. Предположим, что у нас есть множество растений гороха Pisum sativum, на котором проводил свои опыты Мендель, и что частота аллеля Y, ответственного за желтую окраску семян, равна 0,5. Такова же, естественно, и частота аллеля у, который в гомозиготном состоянии обусловливает зеленый цвет семян. Предположим также, что частоты генотипов совпадают с теоретически ожидаемыми и составляют 1/4 YY: 1/2 Yy : 1/4уу. Возьмем теперь наугад любую горошину, не обращая внимания на ее цвет, и посадим ее. Какова будет частота аллеля Y у горошин, полученных от растения, выросшего из посаженной горошины, после самоопыления? Ясно, что существует три возможности: частота аллеля Y будет равна 1, 1/2 или 0 в зависимости от генотипа посаженной горошины. С вероятностью 1/4 эта горошина обладала генотипом YY, такова же вероятность того, что ее генотип был уу; следовательно, частота аллеля Y в потомстве этой горошины с равной вероятностью принимает значение либо 0, либо 1. Предположим теперь, что мы выбрали 1000 горошин из исходной популяции и вырастили из них 1000 растений. Частота аллеля Y в гороши-

Айала ф., Кайгер Дж. Современная генетика: в 3-х т. Т. 3. Пер. С англ.: – м.: Мир, 1988. – 336 с.

126 Эволюция генетического материала

нах, полученных от выросших растений, будет очень близка к 1/2, хотя может оказаться и чуть больше, и чуть меньше.

Если известно число родителей в исходном поколении и частоты аллелей в нем, как это было в только что приведенном примере, то мы можем рассчитать вероятность получить в следующем поколении те или иные частоты аллелей. Для этого нам нужно знать вариансу, или дисперсию, частот аллелей в следующем поколении. Варианса служит мерой изменчивости, обнаруживаемой при сравнении различных выборок (см. приложение 3). Если имеются два аллеля с частотами p и q, причем число родителей равно N (так что число генов в исходном поколении равно 2N) то варианса (s2) частоты аллеля в следующем поколении составляет

а стандартное отклонение может быть выражено как

Эти формулы отражают обратную зависимость между величиной выборки 2N и теоретически ожидаемой изменчивостью частот аллелей. Табл. 23.6 иллюстрирует эффект дрейфа генов от одного поколения к другому в двух случаях: 1) когда p = q = 0,5 и 2) когда p = 0,3, a q = = 0,7. Для каждого случая рассматриваются три варианта эффективной численности популяции: N = 5, 50 и 500. Реально наблюдаемая частота аллеля p укладывается в интервал p ± 2 стандартных отклонений с 95% вероятностью. В малых популяциях с эффективной численностью 5 особей этот интервал ожидаемых значений p в следующем поколении лежит между 0,18 и 0,82; чем больше численность популяции, тем уже интервал ожидаемых значений частоты аллеля в следующем поколении. Заметим, что ширина этого интервала убывает с ростом эффективной численности популяции как корень квадратный из отношения эффективной численности одной популяции к эффективной численности другой.

Таблица 23.6. Эффект случайного дрейфа генов из одного поколения в другое

Численность популяции (N)

Число гамет (2N)

Варианса (pq/2N)

Случай 1

p= q = 0,5

5

10

0,025

0,16

0,18-0,82

50

100

0,0025

0,05

0,40-0,60

500

1000

0,00025

0,016

0,468-0,532

Случай 2

p = 0,3; q = 0,7

5

10

0,021

0,145

0,01-0,59

50

100

0,0021

0,046

0,208-0,392

500

1000

0,00021

0,0145

0,271-0,329